scholarly journals Circulation Index as a Quantitative Indicator of Angiogenesis in Chorioallantoic Membrane of Chicken Broilers

2018 ◽  
Vol 67 (2) ◽  
pp. 164-170
Author(s):  
Zoran Ružić ◽  
Zdenko Kanački ◽  
Dragan Žikić ◽  
Gordana Ušćebrka ◽  
Jovan Mirčeta

Summary Chorioallantoic membrane (CAM) is an extraembryonic membrane very frequently used for in vivo studies in various researches. Since researches require a fast method for quantifying the CAM angiogenic response, there is a need to develop a new precise and unbiased method of quantification of angiogenesis in CAM, which would be easy to perform and suitable for analysis of a large number of samples. The objective of this paper is to apply a new method of quantification of angiogenesis in investigation of the development of blood vessels in the CAM, in particular days of embryonic life considered essential for CAM development. The present research included 75 fertilized eggs of heavy hybrid Ross 308. CAM sampling for stereological analyses was in key phases of embryonic development, namely on the 12th, 15th and 19th day. The results of the present investigation show that the increase in embryonic age results in increase in circulation index, which is also an indicator of angiogenic processes developing in CAM. The lowest value of circulation index (0.1952) was recorded on the first sampling day (E12), while the highest value (0.2666) was recorded on the last sampling day (E19). This method may be applied in researching different factors which affect angiogenesis in CAM.

2001 ◽  
Vol 1 ◽  
pp. 168-180 ◽  
Author(s):  
Lars Edvinsson ◽  
Peter J. Goadsby ◽  
Rolf Uddman

Amylin and adrenomedullin are two peptides structurally related to calcitonin gene-related peptide (CGRP). We studied the occurrence of amylin in trigeminal ganglia and cerebral blood vessels of the cat with immunocytochemistry and evaluated the role of amylin and adrenomedullin in the cerebral circulation by in vitro and in vivo pharmacology. Immunocytochemistry revealed that numerous nerve cell bodies in the trigeminal ganglion contained CGRP immunoreactivity (-ir); some of these also expressed amylin-ir but none adrenomedullin-ir. There were numerous nerve fibres surrounding cerebral blood vessels that contained CGRP-ir. Occasional fibres contained amylin-ir while we observed no adrenomedullin-ir in the vessel walls. With RT-PCR and Real-Time�PCR we revealed the presence of mRNA for calcitonin receptor-like receptor (CLRL) and receptor-activity-modifying proteins (RAMPs) in cat cerebral arteries. In vitro studies revealed that amylin, adrenomedullin, and CGRP relaxed ring segments of the cat middle cerebral artery. CGRP and amylin caused concentration-dependent relaxations at low concentrations of PGF2a-precontracted segment (with or without endothelium) whereas only at high concentration did adrenomedullin cause relaxation. CGRP8-37 blocked the CGRP and amylin induced relaxations in a parallel fashion. In vivo studies of amylin, adrenomedullin, and CGRP showed a brisk reproducible increase in local cerebral blood flow as examined using laser Doppler flowmetry applied to the cerebral cortex of the a-chloralose�anesthetized cat. The responses to amylin and CGRP were blocked by CGRP8-37. The studies suggest that there is a functional sub-set of amylin-containing trigeminal neurons which probably act via CGRP receptors.


Blood ◽  
2008 ◽  
Vol 112 (13) ◽  
pp. 4940-4947 ◽  
Author(s):  
Karolien Castermans ◽  
Sebastien P. Tabruyn ◽  
Rong Zeng ◽  
Judy R. van Beijnum ◽  
Cheryl Eppolito ◽  
...  

Abstract Interleukin-21 (IL-21) is a recently described immunoregulatory cytokine. It has been identified as a very potent immunotherapeutic agent in several cancer types in animal models, and clinical studies are ongoing. IL-21 belongs to the type I cytokine family of which other members, ie, IL-2, IL-15, and IL-4, have been shown to exert activities on vascular endothelial cells (ECs). We hypothesized that IL-21, in addition to inducing the antitumor immune response, also inhibits tumor angiogenesis. In vitro experiments showed a decrease of proliferation and sprouting of activated ECs after IL-21 treatment. We found that the IL-21 receptor is expressed on vascular ECs. Furthermore, in vivo studies in the chorioallantoic membrane of the chick embryo and in mouse tumors demonstrated that IL-21 treatment disturbs vessel architecture and negatively affects vessel outgrowth. Our results also confirm the earlier suggested angiostatic potential of IL-2 in vitro and in vivo. The angiostatic effect of IL-21 is confirmed by the decrease in expression of angiogenesis-related genes. Interestingly, IL-21 treatment of ECs leads to a decrease of Stat3 phosphorylation. Our research shows that IL-21 is a very powerful antitumor compound that combines the induction of an effective antitumor immune response with inhibition of tumor angiogenesis.


1987 ◽  
Vol 65 (4) ◽  
pp. 729-745 ◽  
Author(s):  
B. M. Altura ◽  
B. T. Altura ◽  
A. Carella ◽  
A. Gebrewold ◽  
T. Murakawa ◽  
...  

Contractility of all types of invertebrate and vertebrate muscle is dependent upon the actions and interactions of two divalent cations, viz., calcium (Ca2+) and magnesium (Mg2+) ions. The data presented and reviewed herein contrast the actions of several organic Ca2+ channel blockers with the natural, physiologic (inorganic) Ca2+ antagonist, Mg2+, on microvascular and macrovascular smooth muscles. Both direct in vivo studies on microscopic arteriolar and venular smooth muscles and in vitro studies on different types of blood vessels are presented. It is clear from the studies done so far that of all Ca2+ antagonists examined, only Mg2+ has the capability to inhibit myogenic, basal, and hormonal-induced vascular tone in all types of vascular smooth muscle. Data obtained with verapamil, nimopidine, nitrendipine, and nisoldipine on the microvasculature are suggestive of the probability that a heterogeneity of Ca2+ channels, and of Ca2+ binding sites, exists in different microvascular smooth muscles; although some appear to be voltage operated and others, receptor operated, they are probably heterogeneous in composition from one vascular region to another. Mg2+ appears to act on voltage-, receptor-, and leak-operated membrane channels in vascular smooth muscle. The organic Ca2+ channel blockers do not have this uniform capability; they demonstrate a selectivity when compared with Mg2+. Mg2+ appears to be a special kind of Ca2+ channel antagonist in vascular smooth muscle. At vascular membranes it can (i) block Ca2+ entry and exit, (ii) lower peripheral and cerebral vascular resistance, (iii) relieve cerebral, coronary, and peripheral vasospasm, and (iv) lower arterial blood pressure. At micromolar concentrations (i.e., 10–100 μM), Mg2+ can cause significant vasodilatation of intact arterioles and venules in all regional vasculatures so far examined. Although Mg2+ is three to five orders of magnitude less potent than the organic Ca2+ channel blockers, it possesses unique and potentially useful Ca2+ antagonistic properties.


Nanoscale ◽  
2012 ◽  
Vol 4 (8) ◽  
pp. 2720 ◽  
Author(s):  
Xi Liu ◽  
Xiumei Wang ◽  
Akihiro Horii ◽  
Xiujuan Wang ◽  
Lin Qiao ◽  
...  

Author(s):  
Ekta Tomar ◽  
Sonali Wairagade ◽  
Arachana Gharote ◽  
Ranjit S. Ambad ◽  
Dhruba Hari Chandi

Background: Mandur Bhasma is a herbo-mineral compound. It is prepared by Putapaka method. It is described as Raktasanjanan. In the current study, Mandur Bhasma was prepared with a standardized method w.s.r to Rasatarangini and an experimental study was done to observe the Angiogenic property of Mandur Bhasma. The current study will analyze angiogenic potential of Mandur Bhasma using chick CAM model. This research is intended to study the possible role of Mandur Bhasma on angiogenesis and establishing properties of Mandur Bhasma as an angiogenic by newer means. The experimental study inside the egg shell will be carried out on a membrane known as “chorioallantoic membrane”. Objectives: To Prepare Mandur Bhasma Physicochemical and Analytical study of Mandur Bhasma To verify the angiogenic potential of Mandur bhasma using the chicken chorioallantoic membrane (CAM) model. To compare Angeogenic potential of Mandur bhasma with standard drug progesterone Methodology: Relevant classical literature regarding Mandur will be reviewed and the data will be collected. Mandur Shodhan with Gomutra and Mandur Maran with Triphala decoction will be done. Analytical Study like Organoleptic Test for Rasa, Gandha, Varna, Sparsha, Physicochemical Tests and other analytical test like ICP-AES /ICPMS, XRD structure of Bhasma, EDAX-NANO Particle Size will be done. Expected Results: Changes will be observed in objective outcomes. Conclusion: Conclusion will be drawn by suitably analyzing data.


2018 ◽  
Vol 10 (2) ◽  
pp. 104-22 ◽  
Author(s):  
Anna Meiliana ◽  
Nurrani Mustika Dewi ◽  
Andi Wijaya

BACKGROUND: Atherosclerosis is a leading cause of vascular disease worldwide. During the past several decades, landmark discoveries in the field of vascular biology have evolved our understanding of the biology of blood vessels and the pathobiology of local and systemic vascular disease states and have led to novel disease-modifying therapies for patients. This review is made to understand the molecular mechanism of atherosclerosis for these future therapies.CONTENT: Advances in molecular biology and -omics technologies have facilitated in vitro and in vivo studies which revealed that blood vessels regulate their own redox milieu, metabolism, mechanical environment, and phenotype, in part, through complex interactions between cellular components of the blood vessel wall and circulating factors. Dysregulation of these carefully orchestrated homeostatic interactions has also been implicated as the mechanism by which risk factors for cardiopulmonary vascular disease lead to vascular dysfunction, structural remodeling and, ultimately, adverse clinical events.SUMMARY: Atherosclerosis is a heterogeneous disease, despite a common initiating event of apoB-lipoproteins. Despite of acute thrombotic complications, an adequate resolution response is mounted, where efferocytosis prevents plaque necrosis and a reparative scarring response (the fibrous cap) prevents plaque disruption. However, a small percentage of developing atherosclerotic lesions cannot maintain an adequate resolution response, which leading to the formation of clinically dangerous plaques that can trigger acute lumenal thrombosis and tissue ischemiaand infarction.KEYWORDS: atherosclerosis, oxidative stress, inflammation, efferocytosis, foam cells, thrombosis


Blood ◽  
1999 ◽  
Vol 93 (8) ◽  
pp. 2627-2636 ◽  
Author(s):  
Domenico Ribatti ◽  
Marco Presta ◽  
Angelo Vacca ◽  
Roberto Ria ◽  
Roberta Giuliani ◽  
...  

Abstract Hematopoietic and endothelial cell lineages share common progenitors. Accordingly, cytokines formerly thought to be specific for the hematopoietic system have been shown to affect several functions in endothelial cells, including angiogenesis. In this study, we investigated the angiogenic potential of erythropoietin (Epo), the main hormone regulating proliferation, differentiation, and survival of erythroid cells. Epo receptors (EpoRs) have been identified in the human EA.hy926 endothelial cell line by Western blot analysis. Also, recombinant human Epo (rHuEpo) stimulates Janus Kinase-2 (JAK-2) phosphorylation, cell proliferation, and matrix metalloproteinase-2 (MMP-2) production in EA.hy926 cells and significantly enhances their differentiation into vascular structures when seeded on Matrigel. In vivo, rHuEpo induces a potent angiogenic response in the chick embryo chorioallantoic membrane (CAM). Accordingly, endothelial cells of the CAM vasculature express EpoRs, as shown by immunostaining with an anti-EpoR antibody. The angiogenic response of CAM blood vessels to rHuEpo was comparable to that elicited by the prototypic angiogenic cytokine basic fibroblast growth factor (FGF2), it occurred in the absence of a significant mononuclear cell infiltrate, and it was not mimicked by endothelin-1 (ET-1) treatment. Taken together, these data demonstrate the ability of Epo to interact directly with endothelial cells and to elicit an angiogenic response in vitro and in vivo and thus act as a bona fide direct angiogenic factor.


Sign in / Sign up

Export Citation Format

Share Document