scholarly journals Observations on the Distribution of Certain Tobacco Smoke Components with Respect to Particle Size

Author(s):  
G.P. Morie ◽  
M.S. Baggett

AbstractIf the distribution of specific smoke components with respect to particle size were significantly different than the size distribution of particulate matter, a compound or group of compounds might be selectively removed by the selective filtration of a given particle size. Various techniques have been used to determine the particle size distribution of a few smoke components. Berner and Marek used a Goetz aerosol spectrometer to determine the size distribution of potassium in smoke; and Owen, Westcott and Woodman used a conifuge to examine the distribution of three smoke components. In the present work, a cascade impactor was used to separate smoke particles into four fractions of 0.25 to 1.0 µ in diameter based on the principle that particles in a moving airstream impact on a slide placed in their path, if their momentum is sufficient to overcome the drag exerted by the airstream. The particle size distribution of five organic compounds: indole, nicotine, diethyl phthalate, norphytene, and neophytadiene were determined. These size distributions were compared to the distribution of total particulate matter (TPM) and the following observations were made:1. All compounds were distributed in a pattern similar to that of TPM. Therefore, the selective filtration of a given compound by selective filtration of a given particle size is probably unfeasible.2. The concentrations of indole and nicotine were higher in the medium-size particles (0.5 to 0.75 µ) than in the small or large particles.3. It is known that cellulose acetate filters are more efficient for the filtration of small and large particles than they are for medium-size particles. Therefore, the high concentration of nicotine in the medium-size particles may contribute to the slightly higher filtration efficiency these filters have for the TPM than they have for nicotine.

Author(s):  
Steven L. Alderman ◽  
Chen Song ◽  
Serban C. Moldoveanu ◽  
Stephen K. Cole

AbstractThe relatively volatile nature of the particulate matter fraction of e-cigarette aerosols presents an experimental challenge with regard to particle size distribution measure-ments. This is particularly true for instruments requiring a high degree of aerosol dilution. This was illustrated in a previous study, where average particle diameters in the 10-50 nm range were determined by a high-dilution, electrical mobility method. Total particulate matter (TPM) masses calculated based on those diameters were orders of magnitude smaller than gravimetrically determined TPM. This discrepancy was believed to result from almost complete particle evaporation at the dilution levels of the electrical mobility analysis. The same study described a spectral transmission measurement of e-cigarette particle size in an undiluted state, and reported particles from 210-380 nm count median diameter. Observed particle number concentrations were in the 10Described here is a study in which e-cigarette aerosols were collected on Cambridge filters with adsorbent traps placed downstream in an effort to capture any material passing through the filter. Amounts of glycerin, propylene glycol, nicotine, and water were quantified on the filter and downstream trap. Glycerin, propylene glycol, and nicotine were effciently captured (> 98%) by the upstream Cambridge filter, and a correlation was observed between filtration efficiency and the partial vapor pressure of each component. The present analysis was largely inconclusive with regard to filter efficiency and particle-vapor partitioning of water. [Beitr. Tabakforsch. Int. 26 (2014) 183-190]


Author(s):  
A. S. Kholodov ◽  
K. Yu. Kirichenko ◽  
K. S. Golokhvast

Introduction. Kamchatka Krai is a region with low population density and poorly developed industry. However, in large cities the air quality is degraded due to economic activity. Aim. To study the concentration of airborne particulate matter (in particular, up to 1 µm and up to 10 µm) in Petropavlovsk-Kamchatsky and Yelizovo air and carry out a comparative analysis with the previously obtained results of environmental monitoring of atmospheric suspension.Materials and methods. Airborne particulate matter was studied in snow which was collected during snowfalls to avoid its secondary pollution by anthropogenic aerosols. The melted snow was analyzed on a Fritsch Analysette 22 NanoTech laser particle analyzer (Germany).Results. PM1 particles were found in five snow samples taken in Petropavlovsk-Kamchatsky. The quantity of PM₁₀ is low in all samples, and only in two of six sampled areas it reaches 12%. Compared to the results of previous studies, the concentration of PM1 is at the same level as in previous years, and the content of PM₁₀ has decreased. In samples from Yelizovo, the same trends are observed. Compared to 2018, when a high concentration of PM₁₀ particles was found in almost all samples, reaching 57.2%, there is a trend towards a decrease in the concentration of the potentially hazardous PM fraction.Conclusion. Updated data on the particle size distribution of airborne particulate matter in two cities of the Kamchatka Peninsula were obtained. In the snow samples collected in Petropavlovsk-Kamchatsky and Yelizovo, we found PM₁ and PM₁₀ particles hazardous to human health, although their concentration is generally lower than in previous years of the study. 


Author(s):  
Yuebin Wu ◽  
Nigel N. Clark ◽  
Daniel K. Carder

In 2007, U.S. certification standards for heavy duty on-road diesel engine particulate matter (PM) emissions were reduced from 0.1g/bhp-hr to 0.01g/bhp-hr, representing an order of magnitude reduction in pollutant level. The Tier 4 standards for nonroad diesel engines, being phased in from 2008 through 2015, also require similar level of reduction in PM. Most conventional diesel engines could meet these low PM standards, once equipped with a diesel particulate filter (DPF). However, accurate, repeatable measurements of this PM may pose significant challenges. Gravimetric PM measurement involves diluting exhaust, then collecting the resultant aerosol sample on approved filter media. Few data exist to characterize the evolution of particulate matter (PM) in dilution tunnels, particularly at very low PM mass levels. Data are lacking as well, for PM evolution in portable dilution instruments and in exhaust plumes downstream of the tailpipe. Size distributions of ultra-fine particles in the diesel exhaust from a naturally aspirated ISUZU C240 diesel engine, equipped with a DPF, were studied. Particle size distribution data, during steady-state engine operations, were collected using a Cambustion DMS500 Fast Particulate Spectrometer. The effects of dilution ratios, dilution rates, and residence times on the diesel particulate matter (DPM) size distributions were analyzed and discussed. Measurements were made for three dilution methods: dilution in standard primary and secondary-dilution tunnels with a full scale Constant Volume Sampler (CVS) system, instrument dilution with a Portable Particulate Measurement Device (PPMD), and ambient dilution at the post-tailpipe exhaust plume centerline. Gaseous emissions measurements were utilized as surrogate confirmation of adequate mixing at the various measurement locations, as well as an indicator of dilution ratios. Tunnel sample results indicated varying size distributions at tunnel cross sections where the flow was still developing. Evolution of particle-size distributions was observed even for fully mixed primary flow conditions. Size distributions at the end of the secondary dilution tunnel were observed to vary with different secondary-dilution ratios. Particle-size distributions of post-tailpipe and PPMD test results were analyzed and compared with those results collected from the full-flow tunnel. Results from post-tailpipe sampling indicate that nucleation was the dominant process when the exhaust plume was diluted along the post-tailpipe centerline. Results from PPMD dilution measurements indicate that change of particle-size-distribution curves, including number count and mass concentration levels, were not as strongly correlated to dilution ratios as were the results from the other two sampling methods. This study shows that particle-size distributions measured inside full-flow dilution tunnel can adequately mimic freshly emitted exhaust sampled immediately post-tailpipe.


1991 ◽  
Vol 113 (4) ◽  
pp. 402-411 ◽  
Author(s):  
T. J. Labus ◽  
K. F. Neusen ◽  
D. G. Alberts ◽  
T. J. Gores

A basic investigation of the factors which influence the abrasive jet mixing process was conducted. Particle size analysis was performed on abrasive samples for the “as-received” condition, at the exit of the mixing tube, and after cutting a target material. Grit size distributions were obtained through sieve analysis for both water and air collectors. Two different mixing chamber geometries were evaluated, as well as the effects of pressure, abrasive feed rate, cutting speed, and target material properties on particle size distributions. An analysis of the particle size distribution shows that the main particle breakdown is from 180 microns directly to 63 microns or less, for a nominal 80 grit garnet. This selective breakdown occurs during the cutting process, but not during the mixing process.


Gefahrstoffe ◽  
2019 ◽  
Vol 79 (11-12) ◽  
pp. 443-450
Author(s):  
P. Bächler ◽  
J. Meyer ◽  
A. Dittler

The reduction of fine dust emissions with pulse-jet cleaned filters plays an important role in industrial gas cleaning to meet emission standards and protect the environment. The dust emission of technical facilities is typically measured “end of pipe”, so that no information about the local emission contribution of individual filter elements exists. Cheap and compact low-cost sensors for the detection of particulate matter (PM) concentrations, which have been prominently applied for immission monitoring in recent years have the potential for emission measurement of filters to improve process monitoring. This publication discusses the suitability of a low-cost PM-sensor, the model SPS30 from the manufacturer Sensirion, in terms of the potential for particle emission measurement of surface filters in a filter test rig based on DIN ISO 11057. A Promo® 2000 in combination with a Welas® 2100 sensor serves as the optical reference device for the evaluation of the detected PM2.5 concentration and particle size distribution of the emission measured by the low-cost sensor. The Sensirion sensor shows qualitatively similar results of the detected PM2.5 emission as the low-cost sensor SDS011 from the manufacturer Nova Fitness, which was investigated by Schwarz et al. in a former study. The typical emission peak after jet-pulse cleaning of the filter, due to the penetration of particles through the filter medium, is detected during Δp-controlled operation. The particle size distribution calculated from the size resolved number concentrations of the low-cost sensor yields a distinct distribution for three different employed filter media and qualitatively fits the size distribution detected by the Palas® reference. The emission of these three different types of filter media can be distinguished clearly by the measured PM2.5 concentration and the emitted mass per cycle and filter area, demonstrating the potential for PM emission monitoring by the low-cost PM-sensor. During the period of Δt-controlled filter aging, a decreasing emission, caused by an increasing amount of stored particles in the filter medium, is detected. Due to the reduced particle emission after filter aging, the specified maximum concentration of the low-cost sensor is not exceeded so that coincidence is unlikely to affect the measurement results of the sensor for all but the very first stage of filter life.


1982 ◽  
Vol 60 (8) ◽  
pp. 1101-1107
Author(s):  
C. V. Mathai ◽  
A. W. Harrison

As part of an ongoing general research program on the effects of atmospheric aerosols on visibility and its dependence on aerosol size distributions in Calgary, this paper presents the results of a comparative study of particle size distribution and visibility in residential (NW) and industrial (SE) sections of the city using a mobile laboratory. The study was conducted in the period October–December, 1979. An active scattering aerosol spectrometer measured the size distributions and the corresponding visibilities were deduced from scattering coefficients measured with an integrating nephelometer.The results of this transit study show significantly higher suspended particle concentrations and reduced visibilities in the SE than in the NW. The mean values of the visibilities are 44 and 97 km for the SE and the NW respectively. The exponent of R (particle radius) in the power law aerosol size distribution has a mean value of −3.36 ± 0.24 in the SE compared with the corresponding value of −3.89 ± 0.39 for the NW. These results arc in good agreement with the observations of Alberta Environment; however, they are in contradiction with a recent report published by the City of Calgary.


1993 ◽  
Vol 27 (10) ◽  
pp. 19-34 ◽  
Author(s):  
R. I. Mackie ◽  
R. Bai

The paper examines the importance of size distribution of the influent suspension on the performance of deep bed filters and its significance with regard to modelling. Experiments were carried out under a variety of conditions using suspensions which were identical in every respect apart from their size distribution. The results indicate that the presence of coarse particles does increase the removal of fine particles. Deposition of fine particles leads to a greater headloss than deposition of large particles. Changes in size distribution with time and depth play an important role in determining the behaviour of a filter, and models of both removal and headloss development must take account of this.


2019 ◽  
Vol 62 (2) ◽  
pp. 415-427 ◽  
Author(s):  
Reyna M. Knight ◽  
Xinjie Tong ◽  
Zhenyu Liu ◽  
Sewoon Hong ◽  
Lingying Zhao

Abstract. Poultry layer houses are a significant source of particulate matter (PM) emissions, which potentially affect worker and animal health. Particulate matter characteristics, such as concentration and size distribution inside layer houses, are critical information for assessment of the potential health risks and development of effective PM mitigation technologies. However, this information and its spatial and seasonal variations are lacking for typical layer facilities. In this study, two TSI DustTrak monitors (DRX 8533) and an Aerodynamic Particle Sizer (APS 3321) were used to measure PM mass concentrations and number-weighted particle size distributions in two typical manure-belt poultry layer houses in Ohio in three seasons: summer, autumn, and winter. Bimodal particle size distributions were consistently observed. The average count median diameters (mean ±SD) were 1.68 ±0.25, 2.16 ±0.31, and 1.87 ±0.07 µm in summer, autumn, and winter, respectively. The average geometric standard deviations of particle size were 2.16 ±0.23, 2.16 ±0.18, and 1.74 ±0.17 in the three seasons, respectively. The average mass concentrations were 67.4 ±54.9, 289.9 ±216.2, and 428.1 ±269.9 µg m-3 for PM2.5; 73.6 ±59.5, 314.6 ±228.9, and 480.8 ±306.5 µg m-3 for PM4; and 118.8 ±99.6, 532.5 ±353.0, and 686.2 ±417.7 µg m-3 for PM10 in the three seasons, respectively. Both statistically significant (p < 0.05) and practically significant (difference of means >20% of smaller value) seasonal variations were observed. Spatial variations were only practically significant for autumn mass concentrations, likely due to external dust infiltration from nearby agricultural activities. The OSHA-mandated permissible exposure limit for respirable PM was not exceeded in any season. Keywords: Air quality, Particulate matter, Poultry housing, Seasonal variation, Spatial variation.


Sign in / Sign up

Export Citation Format

Share Document