scholarly journals A Pilot Study to Assess Solanesol Levels in Exhaled Cigarette Smoke

Author(s):  
SC Moldoveanu ◽  
W III Coleman

AbstractThis paper describes the results obtained during the measurement of the level of solanesol in exhaled cigarette smoke from human subjects. The study was performed with three different cigarettes with U.S. Federal Trade Commission (FTC) ‘tar’ values of 5.0 mg, 10.6 mg, and 16.2 mg. The number of human subjects was ten smokers for each of the evaluated products, each subject smoking three cigarettes within one hour. The exhaled smoke was collected using a vacuum assisted procedure that avoids strain in exhaling, and the solanesol was analyzed using an original high performance liquid chromatography (HPLC) technique. The cigarette butts from the smokers were collected and also analyzed for solanesol. The results obtained for the cigarette butts from the smokers were used to calculate the level of solanesol delivered to the smoker, based on calibration curves. These curves were generated separately by analyzing the solanesol in smoke and in the cigarette butts obtained by machine smoking under different puffing regimes. Knowing the levels of solanesol delivered to the smoker and the exhaled levels it was possible to calculate the retention and retention % of this compound from mainstream smoke for different cigarettes types. The amount of retained solanesol is the lowest for the 5.0 mg ‘tar’ product, and the highest for the 16.2 mg ‘tar’ product, although there is not much difference between the 10.6 mg ‘tar’ product and the 16.2 mg ‘tar’ product. For the 10.6 mg ‘tar’ cigarettes the retention % was between 60% and 72%, for the 5.0 mg product the retention % was slightly lower ranging between 53% and 70%, while for the 16.2 mg ‘tar’ product, the retention % was slightly higher ranging between 62% and 82%.A statistical analysis of the retention % data using ANOVA single factor analysis showed that the 10.6 mg ‘tar’ cigarette is not different from the 16.2 mg ‘tar’ product while the retention % for the 5.0 mg ‘tar’ cigarette was statistically different from the other two products. The values for the retention % of solanesol by human smokers as found in this study were in very good agreement with the few reported results in the literature.

Author(s):  
S Moldoveanu ◽  
W Coleman ◽  
J Wilkins

AbstractThis paper presents the findings on a quantitative evaluation of carbonyl levels in exhaled cigarette smoke from human subjects. The cigarettes evaluated include products with 5.0 mg ‘tar’, 10.6 mg ‘tar’ and 16.2 mg ‘tar’, where ‘tar’ is defined as the weight of total wet particulate matter (TPM) minus the weight of nicotine and water, and the cigarettes are smoked following U.S. Federal Trade Commission (FTC) recommendations. The measured levels of carbonyls in the exhaled smoke were compared with calculated yields of carbonyls in the inhaled smoke and a retention efficiency was obtained. The number of human subjects included a total of ten smokers for the 10.6 mg ‘tar’, five for the 16.2 mg ‘tar’, and five for the 5.0 mg ‘tar’ product, each subject smoking three cigarettes. The analyzed carbonyl compounds included several aldehydes (formaldehyde, acetaldehyde, acrolein, propionaldehyde, crotonaldehyde and n-butyraldehyde), and two ketones (acetone and 2-butanone). The smoke collection from the human subjects was vacuum assisted. Exhaled smoke was collected on Cambridge pads pretreated with a solution of dinitrophenylhydrazine (DNPH) followed by high performance liquid chromatography (HPLC) analysis of the dinitrophenylhydrazones of the carbonyl compounds. The cigarette butts from the smokers were collected and analyzed for nicotine. The nicotine levels for the cigarette butts from the smokers were used to calculate the level of carbonyls in the inhaled smoke, based on calibration curves. These were generated separately by analyzing the carbonyls in smoke and the nicotine in the cigarette butts obtained by machine smoking under different puffing regimes. The comparison of the level of carbonyl compounds in exhaled smoke with that from the inhaled smoke showed high retention of all the carbonyls. The retention of aldehydes was above 95% for all three different ‘tar’ levels cigarettes. The ketones were retained with a slightly lower efficiency. Acetone was retained in the range of 90% to 95%. The retention for 2-butanone showed a larger scatter compared to other results but it also appeared to be slightly less absorbed than the aldehydes, with an average retention around 95%. The retention of acetaldehyde and acetone by human smokers was previously reported in literature and the findings from this study are in very good agreement with these result.


Author(s):  
SC Moldoveanu ◽  
FK St. Charles

AbstractIn this study, a comparison between the chemical composition of the particulate-phase of exhaled smoke and that of smoke generated with a smoking machine has been performed. For this purpose, eight human subjects smoked a common Lights (10.6 mg ‘tar’/cig) commercial cigarette and the exhaled particulate-phase smoke from three cigarettes was collected on Cambridge pads for each smoker. The smoke collection from the human subjects was vacuum assisted. The cigarette butts from the smokers were collected and analyzed for nicotine. The machine smoking was performed with a Borgwaldt RM20 CSR smoking machine working under conditions recommended by the U.S. Federal Trade Commission (FTC). The nicotine levels for the cigarette butts from the smokers were used to normalize the level of exhaled smoke condensate to that of the FTC smoking conditions. The smoke condensates from exhaled smoke as well as that from the machine smoking were analyzed by a gas chromatographic technique with mass spectral peak identification. The retention efficiency for 160 compounds was calculated from the ratio of the compound peak areas in the exhaled smoke (normalized by the corresponding butt nicotine level) vs. the areas of the corresponding peaks from the chromatogram of the smoke generated by the smoking machine. In the calculation of the results, it was assumed that the composition of mainstream smoke remains practically constant at different smoking regimes. All compounds found in the machine-generated smoke were also present in the exhaled smoke, but at different levels. About one third of the compounds were retained more than 66% by the smoker. Another third of the compounds were retained between 33% and 66%, and the rest of the compounds were retained very little from the mainstream particulate-phase of the cigarette smoke. The compounds retained more than 66% were in general compounds with lower molecular weight and with higher water solubility, which eluted first from a 5% phenyl dimethyl-polysiloxane (DB-5MS) chromatographic column. The compounds retained less than 33% from smoke were those with higher molecular weights and boiling points, which had longer elution times from the chromatographic column. These compounds consisted mainly of long-chain hydrocarbons (saturated or squalene type) and phytosterol-type compounds. The compounds retained between 33% and 66% had intermediate chromatographic retention times. No attempt was made to evaluate or identify new compounds formed in the exhaled smoke. The results were obtained from a limited number of subjects, but among these the retentions for individual compounds did not show large differences, indicating that the retention process is not very different for the subjects evaluated. An attempt was made to verify whether or not the retention of compounds by the smoker is analogous to a distribution process. Only weak correlations were obtained between the human retention and octanol/water partition coefficients or between the human retention and the chromatographic retention times of individual compounds.


Author(s):  
SC Moldoveanu ◽  
M Borgerding

AbstractThis report evaluates the formation of nitrosonornicotine (NNN) and of 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) from nicotine, and of NNN from nornicotine in the mainstream smoke of a burning cigarette. The cigarettes analyzed in the study were Kentucky reference cigarettes 1R4F and 2R4F, and five other cigarettes, three of them having tobaccos with low levels of tobacco specific nitrosamines (TSNAs). All cigarettes had ‘tar’ levels around 10 mg [where ‘tar’ is defined as the weight of total wet particulate matter (TPM) minus the weight of nicotine and water]. Cigarettes were smoked according to the U.S. Federal Trade Commission (FTC) puffing regimen, using a 35 mL puff volume, 2 sec puff duration and 60 sec puff intervals. Three separate experiments were performed in this study to evaluate the proportion of TSNAs transferred from preexistent tobacco TSNAs and the proportion formed during smoking (pyrosynthesized). In one experiment, the results were obtained by GC/MS analysis of 13C3-TSNAs formed in smoke when 13C3-nicotine was intentionally added to cigarettes. Another experiment used GC analysis with chemiluminescence detection of TSNAs from smoke before and after an excess of nornicotine was intentionally added to cigarettes, and another experiment consisted of LC/MS/MS analysis of 2H4-TSNAs formed in the smoke when 2H4-nicotine and when 2H4-nornicotine were intentionally added to cigarettes. The use of different analytical methods for the study of TSNA formation conveyed an additional level of confidence regarding the reliability of the results obtained. It was found that NNK was generated during smoking from nicotine with 3 × 10-5% to 8 × 10-5% conversion (0.3 ppm to 0.8 ppm conversion of the nicotine) while the result for NNN generation was not conclusive. One experiment demonstrated the formation of NNN from nicotine between 4 × 10-5% and 1.5 × 10-4% (0.4 ppm to 1.5 ppm reported to nicotine), but another experiment did not provide proof of NNN formation, with a limit of quantitation LOQ for NNN corresponding to 5 × 10-5% (or 0.5 ppm). Nornicotine was proven to generate NNN, and the results for the 2R4F cigarette showed 3.3 × 10-3% yield (33 ppm reported to nornicotine) in one experiment and 4.6 × 10-3% (46 ppm reported to nornicotine) in a different experiment, the agreement being very good. Using the results from this study, it was concluded that pyrosynthesis may account for about 5% to 10% of the NNK in mainstream smoke for a filter cigarette with the FTC ‘tar’ level around 10 mg. Pyrosynthesis may account for higher proportions of smoke TSNAs when the cigarette tobacco is low in TSNAs, since the mainstream smoke TSNAs yield from direct transfer from tobacco is small in this case. The contribution of pyrosynthesis may account for 5% to 25% of NNN in mainstream cigarette smoke, or potentially an even higher proportion when the tobacco blend is both low in TSNAs and high in nornicotine. Anabasine is typically present at low levels in tobacco and therefore the formation of nitrosoanabasine(NAB) is of less interest. Anatabine is present in different tobaccos in a range similar to that of nornicotine and being a secondary amine has the potential to act similarly to nornicotine. However, the pyrosynthesis of nitrosoanatabine (NAT) from anatabine was not evaluated in the present study. The study indicated that complete elimination of TSNAs from tobacco is unlikely to completely eliminate the TSNAs from cigarette smoke, and that high nornicotine tobaccos should be avoided in order to minimize the levels of NNN in cigarette smoke.


Author(s):  
SC Moldoveanu ◽  
WM III Coleman

AbstractTwo common humectants are used as additives in the cigarette manufacturing process, propylene glycol (PG) and glycerin. The humectants may influence the deposition of cigarette smoke in the human respiratory tract by affecting the hygroscopic properties and growth of smoke particles. This study examines the influence of glycerin addition on the retention of solanesol by smokers. The influence of PG addition has been previously reported (7). The first cigarette used in the study (control) was a commercially available brand containing no additives in the blend (with a measured level of glycerin of 0.19%). The other cigarette (test) had an identical tobacco blend to the control, but had 2.3% added glycerin. The construction of the cigarette with 2.3% glycerin (test) was selected to match as closely as possible the ‘tar’ (as measured by Federal Trade Commission regimen), pressure drop (open and closed), and nicotine level of the commercial cigarette (control). Twelve smokers evaluated both products. The sample collection was performed using three cigarettes smoked within one hour. Each human subject smoked the control cigarette and then the test cigarette in two separate sessions. The exhaled smoke was collected using a vacuum assisted procedure designed to avoid strain in exhaling, and solanesol was analyzed using an high performance liquid chromatography (HPLC) technique. The cigarette butts from the smokers were collected and also analyzed for solanesol. The results obtained for the cigarette butts from the smokers were used to calculate the level of solanesol in the smoke delivered to the human subject, based on calibration curves. These curves were generated separately by analyzing the solanesol in smoke and in the cigarette butts obtained by machine smoking under different puffing regimes. Knowing the levels of delivered amount of solanesol and that in the exhaled smoke it was possible to calculate the retention of this compound from mainstream smoke for the two cigarette types. The amount of solanesol retained by the smoker (per cigarette) was on average 314.8 µg/cig with 18.9% relative standard deviation for the commercial cigarette, and 302.6 µg/cig with 20.3% relative standard deviation for the cigarette with 2.3% added glycerin. The retention % of solanesol from the commercial cigarette showed an average of 69.5% with 9.4% relative standard deviation, and the cigarette with 2.3% added glycerin showed an average retention of 69.4% with 10.5% relative standard deviation. Applying the paired t-test to the data it was found that there were no significant differences in the retention amount of solanesol, or in the retention % of solanesol for the two cigarettes. No correlation was found between the amount of solanesol delivered to the smoker (in µg/cig) and the solanesol retention % by the smoker.


Author(s):  
S Moldoveanu ◽  
W III Coleman ◽  
J Wilkins

AbstractThis study describes the results regarding the evaluation of retention efficiency by humans of hydroxybenzenes (phenols) from mainstream cigarette smoke. Over twenty phenols were evaluated in the exhaled smoke of a commercial cigarette with 10.6 mg ‘tar’ [U.S. Federal Trade Commission (FTC) ‘tar’ is defined as the weight of total particulate matter minus nicotine and water]. The test was performed on ten human subjects. The exhaled smoke was collected using a vacuum assisted technique that avoids strain in exhaling the smoke. The study showed that the phenols were retained with high efficiency from cigarette smoke, typically above 80%. Only 4-ethylresorcinol, and C3-dihydroxybenzenes (C3 indicating any alkyl with three carbon atoms) were retained less efficiently with retention values around 70%. The high retention of this class of compounds was expected since phenols are polar compounds with relatively low molecular weights between 94 (for phenol) and 152 (for a propyl-dihydroxybenzene).


Author(s):  
Serban C. Moldoveanu

Summaryα-Tocopherol, a type of vitamin E, has been known to be present in tobacco for many years. The compound is an antioxidant protecting cell membranes from oxidants. α-Tocopherol is transferred from tobacco into cigarette smoke, where it is also present. Analysis of α-tocopherol has been reported in a number of studies and in various matrices including tobacco and tobacco smoke. However, no recent publication describes a method for quantitative analysis of tocopherol in tobacco and in cigarette smoke, and many methods reported from previous studies were not published and only presented at conferences or communicated in internal company publications.The goal of this study was to quantitate α-tocopherol and, if present, α-tocopheryl acetate in tobacco and in tobacco smoke. For this analysis, an original HPLC technique was developed and is described in this report. Both UV and MS/MS (MRM mode) were used as detection procedure for the analysis. The results obtained using UV detection were in very good agreement with the results obtained using MS/MS detection. The method has been applied for the analysis of a number of tobaccos, as well as the total particulate matter (TPM) from cigarettes made with the same tobaccos. Depending on tobacco type, the levels of α-tocopherol vary in tobacco between about 200 μg/g up to about 900 μg/g (“dry weight basis”). For ISO type smoking, the levels of α-tocopherol vary in TPM between about 2 μg/mg up to slightly above 4 μg/mg of TPM. For a cigarette generating TPM of about 10 mg/cig, the α-tocopherol is between about 20 μg/cig up to about 40 μg/cig. A relatively good correlation was obtained between the level of α-tocopherol in smoke (ISO type smoking) and the level of the compound in tobacco. α-Tocopheryl acetate was absent in tobacco.


1992 ◽  
Vol 57 (1) ◽  
pp. 33-45
Author(s):  
Vladimír Jakuš

A new approach to theoretical evaluation of the Gibbs free energy of solvation was applied for estimation of retention data in high-performance liquid chromatography on reversed phases (RP-HPLC). Simple and improved models of stationary and mobile phases in RP-HPLC were employed. Statistically significant correlations between the calculated and experimental data were obtained for a heterogeneous series of twelve compounds.


Sign in / Sign up

Export Citation Format

Share Document