scholarly journals Influence of Heavy Metal Concentration on Chlorophyll Content in Pleurozium schreberi Mosses

2020 ◽  
Vol 27 (4) ◽  
pp. 591-601
Author(s):  
Paweł Świsłowski ◽  
Małgorzata Rajfur ◽  
Maria Wacławek

Abstract The aim of biomonitoring is assessment of environment condition. Biomonitoring studies with the use of mosses focus mainly on analytes accumulation and determining elements’ concentrations in the study area. It is often forgotten that a bioindicator should be alive during biomonitoring studies (which can be determined by, e.g., analysis of chlorophyll content). The objective of the carried out research was an assessment of the influence of selected heavy metals concentration: Ni, Cu, Zn, Cd and Pb accumulated by Pleurozium schreberi mosses during 3-month exposition within active biomonitoring, on their vitality, assessed by an analysis of a and b chlorophyll concentrations. The studies were also carried out in laboratory conditions, where the content of the dyes was determined with the aid of a UV-Vis spectrophotometer, in mosses reacting with solutions of various concentrations of the analysed metals. The content of elements in mosses after exposition and in solutions prior and after sorption were determined with the use of atomic absorption spectrometry (AAS) in a flame atomiser. After the carried out studies it was determined that mosses, during 12-week long exposition, accumulated heavy metals, which did not clearly influence the changes in chlorophyll content. The carried out studies prove that heavy metals are not the only and determining factor, which influences chlorophyll content in mosses as well as the bioindicator’s vitality in the conditions of environmental stress.

Author(s):  
Paweł Świsłowski ◽  
Grzegorz Kosior ◽  
Małgorzata Rajfur

Abstract Active biomonitoring is used to assess environmental pollution of elements such as heavy metals by indicator species such as mosses. They are used, among others, in urbanized areas where no indicator species are found. In such study areas, mosses collected from sites considered to be ecologically clean shall be exposed. In this context, it is very important to prepare the mosses properly before the exposure, so that the information received about the condition of the environment is reliable. In 2018, studies were conducted in the forested areas of southern Poland—in Opolskie Province. Pleurozium schreberi mosses were used in these studies. Atomic absorption spectrometry with flame atomiser (F-AAS) was used to determine the concentrations of Mn, Fe, Ni, Cu, Zn and Pb present. The aim was to study the influence of preparation methodology on Pleurozium schreberi moss samples prior to use in active biomonitoring studies. Four different methodologies were tested across four different sample locations (with varying levels of pollution). The results of the research were analysed and the coefficient of variation (CV) was determined. The value of the CV is influenced, among other things, by the location of the particular sample and the level of pollution by, for example heavy metals, in the moss. The research conducted proves that of the four methods used to prepare mosses for later exposure in active biomonitoring, the best method is averaging with simultaneous conditioning of mosses in demineralised water. This treatment causes the CV coefficient to fall below 10% for most of the metals determined in the moss samples. It has also been shown that maintaining moss collection methodology in accordance with ICP Vegetation standards (open/wooded area—tree canopy) also has a significant impact on the result obtained. Statistical analysis confirmed (Wilcoxon test) that the method of processing the mosses significantly influenced the results obtained. Thanks to the appropriate preparation of the mosses before exposition, they can be used in active biomonitoring of, for example, urban areas.


2021 ◽  
Vol 5 (1) ◽  
pp. 467-471
Author(s):  
U. M. Kankara ◽  
Rabiu Nasiru ◽  
Nuraddeen Nasiru Garba ◽  
Jamila Musa Kankara ◽  
Umar Musa Kankara

One of the major routes of heavy metal exposure to humans is via the consumption of vegetable. The study assessed the contribution of automobile emission on the concentration levels of heavy metals in some of commonly consumed vegetables in Katsina state, Nigeria using Atomic Absorption Spectrometry (AAS). Fresh and dried samples of five (5) commonly consumed vegetables were obtained from Danja-Funtua highway road, 0.5 g of each sample was measured into a clean dried beaker and 10 ml of acidic mixture of HNO3/HClO4 in ratio 2:1 was added to the sample for digestion. The heavy metals concentration in this study ranges from 0.6 – 75.5mg/kg, 0.31 – 1.2mg/kg 278 – 1470mg/kg, 0.4 – 36.3mg/kg and 28 – 65 mg/kg for Pb, Cd, Fe, Ni and Cu respectively. Levels of heavy metals were all found to be above the acceptable limits indicating that inhabitants are at risk of heavy metal contamination


2020 ◽  
Author(s):  
Upoma Mahmud ◽  
Md. Tareq Bin Salam ◽  
Abu Khan ◽  
Md. Mizanur Rahman

Abstract Higher accumulation of toxic heavy metals in rice grain and agricultural soil may lead to an imbalanced ecosystem. The present study was carried out to assess the risk of different heavy metals nickel, copper, arsenic, lead, and manganese in agricultural soil and transfer status to rice grain. The samples were collected from four agricultural fields at different times in the Dumuria Upazila (sub-district) under Khulna district in Bangladesh. Heavy metal concentration in soil extracts, irrigation water samples, and grain samples was determined by Atomic Absorption Spectrometry (AAS). Average metal concentrations were calculated and compared with the reference value in soil. In most of the cases, the existence of heavy metals in agricultural soil was greater than the reference soil which is a rising concern. Overall risk index (RI) stated that the examined soils were at moderate risk of contamination. Transfer factor (TF) of Arsenic (0.037 to 0.115) and Manganese (0.056 to 0.155) from soil to rice grain were higher that is also a matter of concern. On the other hand, TF of Lead (Pb) was found in a very negligible amount which is a good sign. Regular monitoring of heavy metals in agricultural soil should be initiated and the awareness level should be increased to avoid environmental problems.


2019 ◽  
Vol 24 (1-2) ◽  
pp. 107-116
Author(s):  
Zuzanna Konopka ◽  
Paweł Świsłowski ◽  
Małgorzata Rajfur

Abstract The aim of the carried out research was to assess atmospheric aerosol pollution levels in the area of three apiaries located in the Opole Province and to analyse heavy metals pollution in bee honey and western honey bees. Pleurozium schreberi moss was used in analysing atmospheric aerosol pollution with the active biomonitoring method, whereas heavy metals levels were determined with flame atomic absorption spectrometry method (F-AAS). Relative Accumulation Factors (RAF) were used in determining increases of analytes concentrations in the moss samples. As a result of the carried out study, the following conclusions have been reached: mosses are good bioindicators of environment pollution thanks to their sorption qualities, similarly to honey bees, which are a bioindicator of environment pollution. According to the Commission Regulation of European Union of 2015 regarding the maximum levels of lead in certain foods (honey), it should not exceed 0.1 mg/kg. On the basis of the carried out study it can be stated that the concentration of this analyte in the analysed honey was below the limit of quantification of the applied analytical method.


2018 ◽  
Vol 33 (2) ◽  
Author(s):  
Rina Zuraida

This paper reports copper, zinc, lead, cadmium, and chromium records of Jakarta Bay sediment since 600 AD and reonstruct environmental changes since that time. Jakarta Bay This study uses samples from a 150 cm long gravity core (TJ-17, 106.902488°E, 5.99381°S) that was acquired from the eastern part of Jakarta Bay in 2010 onboard RV Geomarin I by the Marine Geological Institute. Heavy metal content in Jakarta Bay sediments is used to track environmental changes onland from this site. Heavy metal concentration was analyzed using atomic absorption spectrometry on bulk samples that were taken in 5 cm interval. The results yield background level of Cu at 16 ppm, Zn at 75 ppm, Pb at 20 ppm, Cd at 0.01 – 0.15 ppm, and at Cr 80 ppm. Vertical record of heavy metals show two stages of environmental changes in the region: from 600 AD to 1600 AD and 1800 AD onward. These changes are interpeted as related to land use changes caused by human activity in the West Java region.


2021 ◽  
Vol 19 (4) ◽  
Author(s):  
Krassimira Ilieva-Makulec ◽  
Paweł Dariusz Plichta ◽  
Maciej Sierakowski

The aim of the study was to assess air pollution with heavy metals in Warsaw, on the basis of the concentrations of selected elements in moss samples. The active biomonitoring method (moss-bag technique) was applied using two moss species Pleurozium schreberi and Sphagnum palustre. Moss samples were collected in the Kampinos National Park, and the prepared moss bags were distributed and exposed on seven sites in Warsaw. The analysis of metals accumulated in mosses was performed twice in 2020, after two (August-September) and four months (August-November) of exposure. The concentrations of seven heavy metals (Cr, Cu, Pb, Ni, Fe, Cd and Zn) in the mosses were determined, using an Inductively Coupled Plasma Optical Emission Spectrometer (ICP OES). Our results showed a clear dependence of heavy metal accumulation in the mosses on the location of the exposition site and the exposure period. Both species of mosses were found to accumulate the most metals in the vicinity of pollutant emitters, such as the ArcelorMittal Warsaw smelter, exit roads or roads in the city with heavy traffic, petrol stations, or construction works. After 4 months of exposure, in both moss species, the highest increases in the concentrations were found for four elements: Cr, Pb, Ni and Cd.  Higher concentrations of some heavy metals in the mosses in 2020, as compared to previous studies, indicate a negative influence of progressing urbanisation on air pollution in Warsaw.


2018 ◽  
Vol 23 (1-2) ◽  
pp. 127-136 ◽  
Author(s):  
Małgorzata Rajfur ◽  
Paweł Świsłowski ◽  
Filip Nowainski ◽  
Bogusław Śmiechowicz

Abstract The aim of the carried out research was the assessment of the possibility to use a popular bioindicator - Pleurozium schreberi mosses as a biosensor of the air pollution in living quarters with the analytes originating from tobacco smoke. The moss bag method of active biomonitoring, popular in environmental studies, was applied; the method is based on exposing mosses collected in clean areas in the locations polluted with, for example, heavy metals. However, this experiment involved exposing mosses in living quarters, in which approximately 10 cigarettes were smoked daily (first room - kitchen). For the purpose of comparison, moss samples were also placed in another room (bedroom), which was potentially not polluted. After three months of exposure, the following heavy metals were determined in mosses: Mn, Fe, Ni, Cu, Zn, Cd, Pb and Hg, using the atomic absorption spectrometry method. Additionally, these analytes were also determined in hair samples from the persons smoking in the room and from other smokers; the determined metal concentrations were compared with the results of the studies carried out using hair samples collected from non-smokers. On the basis of carried out research it was confirmed that, among others, the mosses exposed in living quarters accumulate heavy metals, such as Ni, Zn, Pb and Hg, which originate from tobacco smoke. Higher heavy metal concentrations were determined in hair samples from smokers, compared to hair samples from non-smokers.


Author(s):  
Ngo The Cuong ◽  
Tran Hoan Quoc ◽  
Svetlana Vasilievna Zolotokopova

The article focuses on the study of change of containing heavy metals (zinc, copper, iron, cadmium, lead, arsenic) in the abiotic and biotic components of the Serepok river (Vietman) influenced by wastewater discharge from industrial areas. Heavy metal content was determined in the river water and bottom sediments in the four zones: above and within the boundaries of industrial regions Xoa Phu and Tam Thang and in two water reservoirs situated below the boundaries of those industrial areas. Tilapia Galilean ( Sarotherodon galilaeus ), Hemibagrus ( Hemibagrus ), and sazan ( Cyprinus carpio ) caught in these areas were the hydrobionts under study in which liver, gills, skeleton and muscles accumulation of heavy metals was detected. In the organs of fish caught in the river within industrial region, heavy metals concentration was 3-7 times higher. The greatest concentration of heavy metals was found in the liver and gills of fish caught in the boundaries of industrial regions, the least concentration was in the muscles. In most cases, significant correlation between heavy metal concentration in organs of fishes and in river water, bottom sediments has been revealed.


Author(s):  
MdDidarul Islam, Ashiqur Rahaman, Aboni Afrose

This study was based on determining concentration of essential and toxic heavy metal in coconut water available at a local Hazaribagh area in Dhaka, Bangladesh. All essential minerals, if present in the drinking water at high concentration or very low concentration, it has negative actions. In this study, fifteen samples and eight heavy metals were analyzed by Atomic Absorption Spectroscopy (AAS) method which was followed by wet ashing digestion method. The concentration obtained in mg/l were in the range of 0.3 to 1.5, 7.77 to 21.2, 0 to 0.71, 0 to 0.9, 0 to 0.2, 0.9 to 17.3, 0.1 to 0.9, 0 to 0.9 and 0 to 0.7 for Fe, Ni, Cu, Cd, Cr, Zn, Pb and Se respectively. From this data it was concluded that any toxic heavy metals like Cd, Cr, Pb and Ni exceed their toxicity level and some essential nutrients were in low concentration in those samples. 


2018 ◽  
Vol 69 (7) ◽  
pp. 1695-1698
Author(s):  
Marin Rusanescu ◽  
Carmen Otilia Rusanescu ◽  
Gheorghe Voicu ◽  
Mihaela Begea

A calcium bentonite from Orasu Nou deposit (Satu Mare Romania) was used as raw material. We have conducted laboratory experiments to determine the influence of bentonite on the degree of heavy metal retention. It has been observed that the rate of retention increases as the heavy metal concentration decreases. Experimental studies have been carried out on metal retention ( Zn) in bentonite. In this paper, we realized laboratory experiments for determining the influence of metal (Zn) on the growth and development of two types of plants (Pelargonium domesticum and Kalanchoe) and the effect of bentonite on the absorption of pollutants. These flowers were planted in unpolluted soil, in heavy metal polluted soil and in heavy metal polluted soil to which bentonite was added to observe the positive effect of bentonite. It has been noticed that the flowers planted in unpolluted soil and polluted with heavy metals to which bentonite has been added, the flowers have flourished, the leaves are still green and the plants whose soils have been polluted with heavy metals began to dry after 6 days, three weeks have yellowish leaves and flowers have dried. Experiments have demonstrated the essential role of bentonite for the removal of heavy metals polluted soil.


Sign in / Sign up

Export Citation Format

Share Document