scholarly journals Analysis of statistical model-based optimization enhancements in Generalized Self-Adapting Particle Swarm Optimization framework

2020 ◽  
Vol 45 (3) ◽  
pp. 233-254
Author(s):  
Mateusz Zaborski ◽  
Michał Okulewicz ◽  
Jacek Mańdziuk

AbstractThis paper presents characteristics of model-based optimization methods utilized within the Generalized Self-Adapting Particle Swarm Optimization (GA– PSO) – a hybrid global optimization framework proposed by the authors. GAPSO has been designed as a generalization of a Particle Swarm Optimization (PSO) algorithm on the foundations of a large degree of independence of individual particles. GAPSO serves as a platform for studying optimization algorithms in the context of the following research hypothesis: (1) it is possible to improve the performance of an optimization algorithm through utilization of more function samples than standard PSO sample-based memory, (2) combining specialized sampling methods (i.e. PSO, Differential Evolution, model-based optimization) will result in a better algorithm performance than using each of them separately. The inclusion of model-based enhancements resulted in the necessity of extending the GAPSO framework by means of an external samples memory - this enhanced model is referred to as M-GAPSO in the paper.We investigate the features of two model-based optimizers: one utilizing a quadratic function and the other one utilizing a polynomial function. We analyze the conditions under which those model-based approaches provide an effective sampling strategy. Proposed model-based optimizers are evaluated on the functions from the COCO BBOB benchmark set.

Author(s):  
Wei-Der Chang

Engineering optimization problems can be always classified into two main categories including the linear programming (LP) and nonlinear programming (NLP) problems. Each programming problem further involves the unconstrained conditions and constrained conditions for design variables of the optimized system. This paper will focus on the issue about the design problem of NLP with the constrained conditions. The employed method for such NLP problems is a variant of particle swarm optimization (PSO), named improved particle swarm optimization (IPSO). The developed IPSO is to modify the velocity updating formula of the algorithm to enhance the search ability for given optimization problems. In this work, many different kinds of physical engineering optimization problems are examined and solved via the proposed IPSO algorithm. Simulation results compared with various optimization methods reported in the literature will show the effectiveness and feasibility for solving NLP problems with the constrained conditions.


2020 ◽  
Vol 10 (20) ◽  
pp. 7314
Author(s):  
Mutaz Ryalat ◽  
Hazem Salim Damiri ◽  
Hisham ElMoaqet

Dynamic positioning (DP) control system is an essential module used in offshore ships for accurate maneuvering and maintaining of ship’s position and heading (fixed location or pre-determined track) by means of thruster forces being generated by controllers. In this paper, an interconnection and damping assignment-passivity based control (IDA-PBC) controller is developed for DP of surface ships. The design of the IDA-PBC controller involves a dynamic extension utilizing the coordinate transformation which adds damping to some coordinates to ensure asymptotic stability and adds integral action to enhance the robustness of the system against disturbances. The particle swarm optimization (PSO) technique is one of the the population-based optimization methods that has gained the attention of the control research communities and used to solve various engineering problems. The PSO algorithm is proposed for the optimization of the IDA-PBC controller. Numerical simulations results with comparisons illustrate the effectiveness of the new PSO-tuned dynamic IDA-PBC controller.


Author(s):  
Kareem G. Abdulhussein ◽  
Naseer M. Yasin ◽  
Ihsan J. Hasan

In this paper, two optimization methods are used to adjust the gain values for the cascade PID controller. These algorithms are the butterfly optimization algorithm (BOA), which is a modern method based on tracking the movement of butterflies to the scent of a fragrance to reach the best position and the second method is particle swarm optimization (PSO). The PID controllers in this system are used to control the position, velocity, and current of a permanent magnet DC motor (PMDC) with an accurate tracking trajectory to reach the desired position. The simulation results using the Matlab environment showed that the butterfly optimization algorithm is better than the particle swarming optimization (PSO) in terms of performance and overshoot or any deviation in tracking the path to reach the desired position. While an overshoot of 2.557% was observed when using the PSO algorithm, and a position deviation of 7.82 degrees was observed from the reference position.


2010 ◽  
Vol 148-149 ◽  
pp. 420-424 ◽  
Author(s):  
Qin Ming Liu ◽  
Ming Dong

This paper explores the grey model based PSO (particle swarm optimization) algorithm for fatigue strength prognosis of concrete. First, depending on concrete’s testing status, fatigue life is studied. Then, one GM(1,1) based PSO algorithm is used in fatigue strength prognosis of concrete. One important advantage of the proposed algorithm is that only fewer data is in need for fatigue strength prognosis. Finally, a case study is given to illustrate effectiveness and efficiency of the proposed approach.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2868
Author(s):  
Gong Cheng ◽  
Huangfu Wei

With the transition of the mobile communication networks, the network goal of the Internet of everything further promotes the development of the Internet of Things (IoT) and Wireless Sensor Networks (WSNs). Since the directional sensor has the performance advantage of long-term regional monitoring, how to realize coverage optimization of Directional Sensor Networks (DSNs) becomes more important. The coverage optimization of DSNs is usually solved for one of the variables such as sensor azimuth, sensing radius, and time schedule. To reduce the computational complexity, we propose an optimization coverage scheme with a boundary constraint of eliminating redundancy for DSNs. Combined with Particle Swarm Optimization (PSO) algorithm, a Virtual Angle Boundary-aware Particle Swarm Optimization (VAB-PSO) is designed to reduce the computational burden of optimization problems effectively. The VAB-PSO algorithm generates the boundary constraint position between the sensors according to the relationship among the angles of different sensors, thus obtaining the boundary of particle search and restricting the search space of the algorithm. Meanwhile, different particles search in complementary space to improve the overall efficiency. Experimental results show that the proposed algorithm with a boundary constraint can effectively improve the coverage and convergence speed of the algorithm.


2021 ◽  
pp. 1-17
Author(s):  
J. Shobana ◽  
M. Murali

Text Sentiment analysis is the process of predicting whether a segment of text has opinionated or objective content and analyzing the polarity of the text’s sentiment. Understanding the needs and behavior of the target customer plays a vital role in the success of the business so the sentiment analysis process would help the marketer to improve the quality of the product as well as a shopper to buy the correct product. Due to its automatic learning capability, deep learning is the current research interest in Natural language processing. Skip-gram architecture is used in the proposed model for better extraction of the semantic relationships as well as contextual information of words. However, the main contribution of this work is Adaptive Particle Swarm Optimization (APSO) algorithm based LSTM for sentiment analysis. LSTM is used in the proposed model for understanding complex patterns in textual data. To improve the performance of the LSTM, weight parameters are enhanced by presenting the Adaptive PSO algorithm. Opposition based learning (OBL) method combined with PSO algorithm becomes the Adaptive Particle Swarm Optimization (APSO) classifier which assists LSTM in selecting optimal weight for the environment in less number of iterations. So APSO - LSTM ‘s ability in adjusting the attributes such as optimal weights and learning rates combined with the good hyper parameter choices leads to improved accuracy and reduces losses. Extensive experiments were conducted on four datasets proved that our proposed APSO-LSTM model secured higher accuracy over the classical methods such as traditional LSTM, ANN, and SVM. According to simulation results, the proposed model is outperforming other existing models.


Author(s):  
Na Geng ◽  
Zhiting Chen ◽  
Quang A. Nguyen ◽  
Dunwei Gong

AbstractThis paper focuses on the problem of robot rescue task allocation, in which multiple robots and a global optimal algorithm are employed to plan the rescue task allocation. Accordingly, a modified particle swarm optimization (PSO) algorithm, referred to as task allocation PSO (TAPSO), is proposed. Candidate assignment solutions are represented as particles and evolved using an evolutionary process. The proposed TAPSO method is characterized by a flexible assignment decoding scheme to avoid the generation of unfeasible assignments. The maximum number of successful tasks (survivors) is considered as the fitness evaluation criterion under a scenario where the survivors’ survival time is uncertain. To improve the solution, a global best solution update strategy, which updates the global best solution depends on different phases so as to balance the exploration and exploitation, is proposed. TAPSO is tested on different scenarios and compared with other counterpart algorithms to verify its efficiency.


2021 ◽  
Vol 13 (6) ◽  
pp. 1207
Author(s):  
Junfei Yu ◽  
Jingwen Li ◽  
Bing Sun ◽  
Yuming Jiang ◽  
Liying Xu

Synthetic aperture radar (SAR) systems are susceptible to radio frequency interference (RFI). The existence of RFI will cause serious degradation of SAR image quality and a huge risk of target misjudgment, which makes the research on RFI suppression methods receive widespread attention. Since the location of the RFI source is one of the most vital information for achieving RFI spatial filtering, this paper presents a novel location method of multiple independent RFI sources based on direction-of-arrival (DOA) estimation and the non-convex optimization algorithm. It deploys an L-shaped multi-channel array on the SAR system to receive echo signals, and utilizes the two-dimensional estimating signal parameter via rotational invariance techniques (2D-ESPRIT) algorithm to estimate the positional relationship between the RFI source and the SAR system, ultimately combines the DOA estimation results of multiple azimuth time to calculate the geographic location of RFI sources through the particle swarm optimization (PSO) algorithm. Results on simulation experiments prove the effectiveness of the proposed method.


2021 ◽  
Vol 11 (2) ◽  
pp. 839
Author(s):  
Shaofei Sun ◽  
Hongxin Zhang ◽  
Xiaotong Cui ◽  
Liang Dong ◽  
Muhammad Saad Khan ◽  
...  

This paper focuses on electromagnetic information security in communication systems. Classical correlation electromagnetic analysis (CEMA) is known as a powerful way to recover the cryptographic algorithm’s key. In the classical method, only one byte of the key is used while the other bytes are considered as noise, which not only reduces the efficiency but also is a waste of information. In order to take full advantage of useful information, multiple bytes of the key are used. We transform the key into a multidimensional form, and each byte of the key is considered as a dimension. The problem of the right key searching is transformed into the problem of optimizing correlation coefficients of key candidates. The particle swarm optimization (PSO) algorithm is particularly more suited to solve the optimization problems with high dimension and complex structure. In this paper, we applied the PSO algorithm into CEMA to solve multidimensional problems, and we also add a mutation operator to the optimization algorithm to improve the result. Here, we have proposed a multibyte correlation electromagnetic analysis based on particle swarm optimization. We verified our method on a universal test board that is designed for research and development on hardware security. We implemented the Advanced Encryption Standard (AES) cryptographic algorithm on the test board. Experimental results have shown that our method outperforms the classical method; it achieves approximately 13.72% improvement for the corresponding case.


Sign in / Sign up

Export Citation Format

Share Document