scholarly journals Probing Electronic Properties of Graphene on the Atomic Scale by Scanning Tunneling Microscopy and Spectroscopy

2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Li Gao

AbstractAtomic scale investigations of the electronic properties of graphene are playing a crucial role in understanding and tuning the exotic properties of this material for its potential device applications. Scanning tunneling microscopy (STM) and spectroscopy (STS) are unique techniques for atomic scale investigations and have been extensively used in graphene research. In this article, we review recent progresses in STM and STS studies of the electronic properties of suspended graphene as well as graphene supported by different substrates including graphite, metals, silicon carbide, silicon dioxide and boron nitride.

Author(s):  
C T. Rogers ◽  
S. Gregory ◽  
E. M. Clausen

Scanning tunneling microscopy has proven to be an enormously useful technique for probing the atomic scale electronic structure of clean semiconductor surfaces. In particular, application of STM current-voltage spectroscopy over the last several years has begun to yield detailed information about the energies and spatial locations of electronic bonds at surfaces. Recent work by Kaiser and Bell shows that STM can also be used to elucidate the nature of electronic transport across interfaces buried tens of nanometers beneth the surface. We are attempting to extend the STM current-voltage technique, which has been so successful at addressing near surface electronic properties, to allow the study of the more general class of opto-electronic properties near semiconductor surfaces: We have constructed a novel Scanning Tunneling Microscope/Electro-luminescence apparatus. Our instrument combines a high speed STM with a stationary tunnel tip/collection optics assembly and a standard spectrometer and photodetector. The system allows us to study the spectral composition and intensity of the light generated by various inelastic processes during electron tunneling.


MRS Bulletin ◽  
1997 ◽  
Vol 22 (8) ◽  
pp. 22-26 ◽  
Author(s):  
Edward T. Yu

As characteristic dimensions in semiconductor devices continue to shrink and as advanced heterostructure devices increase in prominence, the ability to characterize structure and electronic properties in semiconductor materials and device structures at the atomic to nanometer scales has come to be of outstanding and immediate importance. Phenomena such as atomic-scale roughness of heterojunction interfaces, compositional ordering in semiconductor alloys, discreteness and spatial distribution of dopant atoms, and formation of self-assembled nanoscale structures can exert a profound influence on material properties and device behavior. The relationships between atomic-scale structure, epitaxial growth or processing conditions, and ultimately material properties and device behavior must be understood for realization and effective optimization of a wide range of semiconductor heterostructure and nanoscale devices.Cross-sectional scanning tunneling microscopy (STM) has emerged as a unique and powerful tool in the study of atomic-scale properties in III-V compound semiconductor heterostructures and of nanometer-scale structure and electronic properties in Si micro-electronic devices, offering unique capabilities for characterization that in conjunction with a variety of other, complementary experimental methods are providing new and important insights into material and device properties at the atomic to nanometer scale. In this article, we describe the basic experimental techniques involved in cross-sectional STM and give a few representative applications from our work that illustrate the ability, using cross-sectional STM in conjunction with other experimental techniques, to probe atomic-scale features in the structure of semiconductor heterojunctions and to correlate these features with epitaxial-growth conditions and device behavior.


Author(s):  
P.E. Russell ◽  
I.H. Musselman

Scanning tunneling microscopy (STM) has evolved rapidly in the past few years. Major developments have occurred in instrumentation, theory, and in a wide range of applications. In this paper, an overview of the application of STM and related techniques to polymers will be given, followed by a discussion of current research issues and prospects for future developments. The application of STM to polymers can be conveniently divided into the following subject areas: atomic scale imaging of uncoated polymer structures; topographic imaging and metrology of man-made polymer structures; and modification of polymer structures. Since many polymers are poor electrical conductors and hence unsuitable for use as a tunneling electrode, the related atomic force microscopy (AFM) technique which is capable of imaging both conductors and insulators has also been applied to polymers.The STM is well known for its high resolution capabilities in the x, y and z axes (Å in x andy and sub-Å in z). In addition to high resolution capabilities, the STM technique provides true three dimensional information in the constant current mode. In this mode, the STM tip is held at a fixed tunneling current (and a fixed bias voltage) and hence a fixed height above the sample surface while scanning across the sample surface.


Author(s):  
Mircea Fotino ◽  
D.C. Parks

In the last few years scanning tunneling microscopy (STM) has made it possible and easily accessible to visualize surfaces of conducting specimens at the atomic scale. Such performance allows the detailed characterization of surface morphology in an increasing spectrum of applications in a wide variety of fields. Because the basic imaging process in STM differs fundamentally from its equivalent in other well-established microscopies, good understanding of the imaging mechanism in STM enables one to grasp the correct information content in STM images. It thus appears appropriate to explore by STM the structure of amorphous carbon films because they are used in many applications, in particular in the investigation of delicate biological specimens that may be altered through the preparation procedures.All STM images in the present study were obtained with the commercial instrument Nanoscope II (Digital Instruments, Inc., Santa Barbara, California). Since the importance of the scanning tip for image optimization and artifact reduction cannot be sufficiently emphasized, as stressed by early analyses of STM image formation, great attention has been directed toward adopting the most satisfactory tip geometry. The tips used here consisted either of mechanically sheared Pt/Ir wire (90:10, 0.010" diameter) or of etched W wire (0.030" diameter). The latter were eventually preferred after a two-step procedure for etching in NaOH was found to produce routinely tips with one or more short whiskers that are essentially rigid, uniform and sharp (Fig. 1) . Under these circumstances, atomic-resolution images of cleaved highly-ordered pyro-lytic graphite (HOPG) were reproducibly and readily attained as a standard criterion for easily recognizable and satisfactory performance (Fig. 2).


2009 ◽  
Vol 603 (10-12) ◽  
pp. 1315-1327 ◽  
Author(s):  
F. Besenbacher ◽  
J.V. Lauritsen ◽  
T.R. Linderoth ◽  
E. Lægsgaard ◽  
R.T. Vang ◽  
...  

2001 ◽  
Vol 86 (18) ◽  
pp. 4132-4135 ◽  
Author(s):  
D. Wortmann ◽  
S. Heinze ◽  
Ph. Kurz ◽  
G. Bihlmayer ◽  
S. Blügel

Sign in / Sign up

Export Citation Format

Share Document