scholarly journals Kinematic and Dynamic Analysis of New Polar Positioning System Dedicated to Mechatronic Laser Glass Engraving System

2014 ◽  
Vol 19 (4) ◽  
pp. 771-781 ◽  
Author(s):  
R. Trochimczuk

Abstract Analytical formulas describing the kinematics and dynamics of a multibody system of a new polar positioning system dedicated to mechatronic laser glass or other transparent dielectrics engraving system will be presented in this work. The analytical results will become in the later stages of the research the basis of numerical simulations. They will optimize the proposed solution of the positioning system.

2014 ◽  
Vol 527 ◽  
pp. 140-145
Author(s):  
Da Xu Zhao ◽  
Bai Chen ◽  
Guo Zhong Shou ◽  
Yu Qi Gu

In view of the existing problems of traditional interventional catheters, particularly poor activity, operation difficulty and mass blind area, a novel interventional catheter with a cable-driven active head-end is proposed, and a prototype was built to verify the performance. This paper deals with the kinematics and dynamics of the cable-driven prototype, a dynamic model based on Kanes method combined with screw theory was presented in this paper. According the mathematical model and the prototypes structure, the analysis of kinematics and dynamics of active head-end-end is done in the environment of Mathematica. The needed driving forces of every joint when the system moving along planned trajectory are calculated. The results can provide a basis for the structure design and motion control of the interventional active catheter.


Author(s):  
Sung-Soo Kim ◽  
Jeffrey S. Freeman

Abstract This paper details a constant stepsize, multirate integration scheme which has been proposed for multibody dynamic analysis. An Adams-Bashforth Moulton integration algorithm has been implemented, using the Nordsieck form to store internal integrator information, for multirate integration. A multibody system has been decomposed into several subsystems, treating inertia coupling effects of subsystem equations of motion as the inertia forces. To each subsystem, different rate Nordsieck form of Adams integrator has been applied to solve subsystem equations of motion. Higher order derivative information from the integrator provides approximation of inertia force computation in the decomposed subsystem equations of motion. To show the effectiveness of the scheme, simulations of a vehicle multibody system that consists of high frequency suspension motion and low frequency chassis motion have been carried out with different tire excitation forces. Efficiency of the proposed scheme has been also investigated.


Robotica ◽  
2019 ◽  
Vol 37 (11) ◽  
pp. 1971-1986
Author(s):  
Ruoyu Feng ◽  
Peng Zhang ◽  
Junfeng Li ◽  
Hexi Baoyin

SummaryIn this study, the kinematics and dynamics of a single actuator wave (SAW)-like robot are explored. Comprising a helical spine and links, SAW has the potential for miniaturization. A kinematic model for SAW is firstly established, and the dynamic equation of motion is derived based on Kane’s method. For validation, the motion of SAW is simulated using both MATLAB and ADAMS, and the comparison of results demonstrates the effectiveness of the theoretical models. Then the inverse dynamic analysis is performed to reveal the power consumption. Finally, robot prototypes are developed and tested to confirm the robot velocity predicted by simulations.


2019 ◽  
Vol 4 (2) ◽  
pp. 34
Author(s):  
Deasy Wahyuni ◽  
Elisawati Elisawati

Newton method is one of the most frequently used methods to find solutions to the roots of nonlinear equations. Along with the development of science, Newton's method has undergone various modifications. One of them is the hasanov method and the newton method variant (vmn), with a higher order of convergence. In this journal focuses on the three-step iteration method in which the order of convergence is higher than the three methods. To find the convergence order of the three-step iteration method requires a program that can support the analytical results of both methods. One of them using the help of the matlab program. Which will then be compared with numerical simulations also using the matlab program.  Keywords : newton method, newton method variant, Hasanov Method and order of convergence


2010 ◽  
Vol 32 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Nguyen Van Khang ◽  
Nguyen Phong Dien ◽  
Nguyen Van Vinh ◽  
Tran Hoang Nam

This paper deals with the problem of inverse kinematics and dynamics of a measuring manipulator with kinematic redundancy which was designed and manufactured at Hanoi University of Technology for measuring the geometric tolerance of surfaces of machining components. A comparison between the calculation result and the experimental measurement is also presented.


Author(s):  
Huanhuan Li ◽  
Diyi Chen ◽  
Feifei Wang ◽  
Hao Zhang

In this paper, we pay attention to studying the switched model of the hydroturbine governing system (HTGS) by introducing the concept of the switching of operational conditions. More specifically, utilizing the data of an existent hydropower station in China, we propose six nonlinear dynamic transfer coefficients of the hydroturbine, which can better describe the dynamic characteristics of the HTGS in the process of load rejection transient. Moreover, the elastic water hammer-impact of the penstock system and the nonlinearity of the generator for the process of load rejection transient are considered. Based on the combination of the different regulation modes of the governor and the corresponding running conditions of the hydroelectric generating unit, a novel nonlinear dynamic switched mathematical model of the HTGS is finally established. Meanwhile, the nonlinear dynamic behaviors of the governing system are exhaustively investigated using numerical simulations. These methods and analytical results will provide some theory bases for running a hydropower station.


2004 ◽  
Vol 126 (4) ◽  
pp. 673-682 ◽  
Author(s):  
F. G. Benitez ◽  
J. M. Madrigal ◽  
J. M. del Castillo

An infinitely variable transmission (IVT), based on the use of one-way action clutches, belonging to the family of ratcheting drives is described. The mechanical foundations and numerical simulations carried out along this research envisage a plausible approach to its use as gear-box in general mechanical industry and its prospective use in automobiles and self-propelled vehicles. The system includes one-way clutches—free wheels or overrunning clutches—and two epicyclic gear systems. The output velocity, with oscillatory character, common to the ratcheting drives systems, presents a period similar to that produced by alternative combustion motors, making this transmission compatible with automobile applications. The variation of the transmission is linear in all the working range. The kinematics operating principles behind this IVT is described followed by a numerical simulation of the dynamic analysis. A prototype has been constructed and tested to assess its mechanical efficiency for different reduction ratios. The efficiency values predicted by theory agree with those experimentally obtained on a bench-rig testing equipment.


Sign in / Sign up

Export Citation Format

Share Document