scholarly journals Robust decentralized controller design in time domain: Equivalent subsystem approach

2021 ◽  
Vol 72 (5) ◽  
pp. 330-336
Author(s):  
Vojtech Veselý

Abstract In this paper, the original method to design of PID robust decentralized controller is obtained for linear time-invariant large-scale uncertain system. The controller design procedure performs on the subsystem level such that the closed-loop stability and performance of complex system in the frame of the designer chosen controller design procedure ( H 2 , L 2 -gain, pole placement,...) is guaranteed. The proposed method is implemented in two steps. In the first step, the required dynamic properties of the subsystems are determined so as to ensure the stability of complex system. In the second step, on the subsystem level a decentralized controller design is provided using any suitable design procedure for each subsystem.

2020 ◽  
Vol 71 (4) ◽  
pp. 246-253
Author(s):  
Vojtech Veselý

AbstractThe paper is devoted to obtain original equivalent subsystem method to design of decentralized controller for linear large scale systems. On the theoretical example a new robust decentralized PID switched controller design procedure is obtained for linear time-varying (gain scheduled plant model) uncertain complex system with decentralized output and input structure. Controller design procedure to decentralized controller design performs on the subsystem level. The designed decentralized switched controller ensures the robust stability of closed-loop complex polytopic system with performance H2 quadratic cost function (QSR). The proposed practical examples with ideal or non-ideal switch of switching parameters show the effectiveness of equivalent subsystem approach.


2017 ◽  
Vol 66 (3) ◽  
pp. 459-474
Author(s):  
Hamid Reza Koofigar ◽  
Ghader Isazadeh

AbstractA robust auxiliary wide area damping controller is proposed for a unified power flow controller (UPFC). The mixedH2/H∞problem with regional pole placement, resolved by linear matrix inequality (LMI), is applied for controller design. Based on modal analysis, the optimal wide area input signals for the controller are selected. The time delay of input signals, due to electrical distance from the UPFC location is taken into account in the design procedure. The proposed controller is applied to a multi-machine interconnected power system from the IRAN power grid. It is shown that the both transient and dynamic stability are significantly improved despite different disturbances and loading conditions.


2016 ◽  
Vol 39 (3) ◽  
pp. 297-311 ◽  
Author(s):  
HE Erol ◽  
A İftar

The stabilizing decentralized controller design problem for (possibly descriptor-type) linear time-invariant neutral time-delay systems is considered. A design approach, based on the continuous pole placement algorithm and the decentralized pole assignment algorithm, is proposed. A design example is also presented, to demonstrate the proposed approach.


2018 ◽  
Vol 69 (2) ◽  
pp. 117-127
Author(s):  
Štefan Bucz ◽  
Alena Kozáková ◽  
Vojtech Veselý

AbstractThe paper presents a new original robust PID design method for non-minimum phase plants to achieve closed-loop performance prescribed by the process technologist in terms of settling time and maximum overshoot, respectively. The proposed design procedure has two steps: first, the uncertain system is identified using external harmonic excitation signal with frequency, second, the controller of the nominal system is designed for specified gain margin. A couple of parameters is obtained from the time domain performance specification using quadratic regression curves, the so-called performance Bparabolas so, as to simultaneously satisfy robust closed-loop stability conditions. The main benefits of the proposed method are universal applicability for systems with both fast and slow dominant dynamics as well as performance specification using time domain criteria. The proposed PID design method has been verified on a set of benchmark systems.


1998 ◽  
Vol 37 (12) ◽  
pp. 95-102 ◽  
Author(s):  
Pericles R. Barros ◽  
Bengt Carlsson

More stringent effluent and cost requirements are increasing the need for better control of wastewater treatment plants. In an activated sludge process, the nitrogen removal efficiency may be improved by adding an external carbon source. In this paper, automatic control of the nitrate level by regulating external carbon flow is discussed. More specifically, an iterative tuning procedure for the controller is outlined. Iterative controller design schemes aim at tuning high performance controllers of low complexity using closed loop data. The basic strategy used in this paper is an iterative pole placement controller design procedure. The suggested approach is compared with conventional design in a simulation study.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Huanqing Wang ◽  
Qi Zhou ◽  
Xuebo Yang ◽  
Hamid Reza Karimi

The problem of robust decentralized adaptive neural stabilization control is investigated for a class of nonaffine nonlinear interconnected large-scale systems with unknown dead zones. In the controller design procedure, radical basis function (RBF) neural networks are applied to approximate packaged unknown nonlinearities and then an adaptive neural decentralized controller is systematically derived without requiring any information on the boundedness of dead zone parameters (slopes and break points). It is proven that the developed control scheme can ensure that all the signals in the closed-loop system are semiglobally uniformly ultimately bounded in the sense of mean square. Simulation study is provided to further demonstrate the effectiveness of the developed control scheme.


Author(s):  
Damiano Rotondo ◽  
Fatiha Nejjari ◽  
Vicenç Puig

Abstract A solution for fault tolerant control (FTC) of a quadrotor unmanned aerial vehicle (UAV) is proposed. It relies on model reference-based control, where a reference model generates the desired trajectory. Depending on the type of reference model used for generating the reference trajectory, and on the assumptions about the availability and uncertainty of fault estimation, different error models are obtained. These error models are suitable for passive FTC, active FTC and hybrid FTC, the latter being able to merge the benefits of active and passive FTC while reducing their respective drawbacks. The controller is generated using results from the robust linear parameter varying (LPV) polytopic framework, where the vector of varying parameters is used to schedule between uncertain linear time invariant (LTI) systems. The design procedure relies on solving a set of linear matrix inequalities (LMIs) in order to achieve regional pole placement and H∞ norm bounding constraints. Simulation results are used to compare the different FTC strategies.


2020 ◽  
Vol 10 (1) ◽  
pp. 64-78
Author(s):  
Taworn Benjanarasuth

One of basic key tasks of a control system design is to achieve the desired output responses both in transient and steady states. Besides, the common input limitations, such as saturation and slew rate or at least avoiding a sudden jump in the command signal, must be considered in practice. However, popular controllers such as PI and PID cause sudden changes or even impulsive surges in the command signal under external excitations by a step reference input and/or step input/output disturbances. In this paper, a simplified controller design with its preferred structure models to meet the mentioned requirements is presented for a class of minimum-phase stable linear time-invariant single-input single-output processes with proper real rational transfer function. The structure of such controller is mathematically investigated and the result is that the controller must be strictly proper and containing an integral factor. The design procedure is simple and straightforward based on reference model matching and model cancellation with only two required conditions on the desired closed-loop transfer function which are its relative degree comparing to the processes to be controlled and the equality of the lower order coefficient(s) in its numerator and denominator polynomials. A generalized integral anti-windup structure, based on back calculation method and PI/PID anti-windup scheme, to lessen the saturation effect on the integral action of the proposed controller is additionally introduced by rearranging the controller in a parallel form with one separated integral control action portion. Numerical examples are investigated to demonstrate the design procedure and verify the success of the proposed controller to the required objectives.


Sign in / Sign up

Export Citation Format

Share Document