scholarly journals State of the Landscape and Dynamics of Loss and Fragmentation of Forest Critically Endangered in the Tropical Andes Hotspot: Implications for Conservation Planning

2021 ◽  
Vol 14 (1) ◽  
pp. 73-91
Author(s):  
James Rodríguez-Echeverry ◽  
Margareth Leiton

Abstract Currently, there is no precise information on the degree of transformation of Tropical Andes hotspot landscape and native ecosystems due to the intensification of agricultural and urban land-use. Proper knowledge of these changes would provide crucial information for planning conservation strategies. We evaluated the impact of the intensification of agricultural and urban land-use on the Inter-Andean Dry Forest and Tropical Montane Forest, both of which are categorized as Critically Endangered, and the state of the landscape in the High Rio Guayllabamba watershed, Ecuador, during the periods 1991–2005 and 2005–2017. The evaluation was carried out using Landsat satellite images of 30 x 30 m pixels and landscape metrics. We found an advanced state of landscape transformation. Since the 1990s, the loss of both ecosystems was largely caused by the conversion of forest to agriculture, resulting in substantial changes in the spatial configuration of these ecosystems. From 1991 to 2017, 19.8 % and 16.1 % of Inter-Andean Dry Forest and Tropical Montane Forest respectively, were converted to agriculture. The loss of Inter-Andean Dry Forest was 28 % and the number of forest patches increased by more than 150%. The loss of Tropical Montane Forest was 16.5 % and the number of forest patches increased by more than 300 %. The largest loss and fragmentation of forest cover occurred from 1991 to 2005. We suggested planning landscape-scale conservation, using the patch-corridor-matrix model. This model is appropriate given the current configuration of the landscape studied, with Inter-Andean Dry Forest and Tropical Montane Forest restricted to small patches sparsely distributed across the landscape.

2020 ◽  
Vol 7 (1) ◽  
pp. 91
Author(s):  
Júlio Barboza Chiquetto ◽  
Maria Elisa Siqueira Silva ◽  
Rita Yuri Ynoue ◽  
Flávia Noronha Dutra Ribieiro ◽  
Débora Souza Alvim ◽  
...  

A poluição do ar é influenciada por fatores naturais e antropogênicos. Quatro pontos de monitoramento (veicular, comercial, residencial e background urbano (BGU))da poluição do ar em São Paulo foram avaliados durante 16 anos, revelando diferenças significativas devidoao uso do solo em todas as escalas temporais. Na escala diurna, as concentrações de poluentes primários são duas vezes mais altas nos pontos veicular e residencial do que no ponto BGU, onde a concentração de ozonio (O3) é 50% mais alta. Na escala sazonal, as concentrações de monóxido de carbono(CO) variaram em 80% devido ao uso do solo, e 55% pela sazonalidade.As variações sazonais ede uso do solo exercem impactos similares nas concentrações de O3 e monóxido de nitrogênio (NO). Para o material particulado grosso (MP10) e o dióxido de nitrogênio(NO2), as variações sazonais são mais intensas do que as por uso do solo. Na série temporal de 16 anos, o ponto BGU apresentou correlações mais fortes e significativas entre a média mensal de ondas longas (ROL) e o O3 (0,48) e o MP10 (0,37), comparadas ao ponto veicular (0,33 e 0,22, respectivamente). Estes resultados confirmam que o uso do solo urbano tem um papel significativo na concentração de poluentes em todas as escalas de análise, embora a sua influência se torne menos pronunciada em escalas maiores, conforme a qualidade do ar transita de um sistema antropogênico para um sistema natural. Isto poderá auxiliar decisões sobre políticas públicas em megacidades envolvendo a modificação do uso do solo.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 303
Author(s):  
Xinhai Lu ◽  
Yifeng Tang ◽  
Shangan Ke

The construction and operation of high-speed rail (HSR) has become an important policy for China to achieve efficiency and fairness and promote high-quality economic growth. HSR promotes the flow of production factors such as labor and capital and affects economic growth, and may further affect urban land use efficiency (ULUE). To explore the impact of HSR on ULUE, this paper uses panel data of 284 cities in China from 2005 to 2018, and constructs Propensity Score Matching-Differences in Differences model to evaluate the effect of HSR on ULUE. The result of entire China demonstrates that the HSR could significantly improves the ULUE. Meanwhile, this paper also considers the heterogeneity of results caused by geographic location, urban levels and scales. It demonstrates that the HSR has a significantly positive effect on ULUE of Eastern, Central China, and large-sized cities. However, in Western China, in medium-sized, and small-sized cities, the impact of HSR on ULUE is not significant. This paper concludes that construction and operation of HSR should be linked to urban development planning and land use planning. Meanwhile, the cities with different geographical locations and scales should take advantage of HSR to improve ULUE and promote urban coordinated development.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Xinli Ke ◽  
Feng Wu ◽  
Caixue Ma

Urban land expansion plays an important role in climate change. It is significant to select a reasonable urban expansion pattern to mitigate the impact of urban land expansion on the regional climate in the rapid urbanization process. In this paper, taking Wuhan metropolitan as the case study area, and three urbanization patterns scenarios are designed to simulate spatial patterns of urban land expansion in the future using the Partitioned and Asynchronous Cellular Automata Model. Then, simulation results of land use are adjusted and inputted into WRF (Weather Research and Forecast) model to simulate regional climate change. The results show that: (1) warming effect is strongest under centralized urbanization while it is on the opposite under decentralized scenario; (2) the warming effect is stronger and wider in centralized urbanization scenario than in decentralized urbanization scenario; (3) the impact trends of urban land use expansion on precipitation are basically the same under different scenarios; (4) and spatial distribution of rainfall was more concentrated under centralized urbanization scenario, and there is a rainfall center of wider scope, greater intensity. Accordingly, it can be concluded that decentralized urbanization is a reasonable urbanization pattern to mitigate climate change in rapid urbanization period.


2013 ◽  
Vol 726-731 ◽  
pp. 4645-4649
Author(s):  
Jia Hua Zhang ◽  
Cui Hao ◽  
Feng Mei Yao

We developed an approach to assess urban land use changes that incorporates socio-economic and environmental factors with multinomial logistic model, remote sensing data and GIS, and to quantify the impact of macro variables on land use of urban areas for the years 1990, 2000 and 2010 in Binhai New Area, China. The Markov transition matrix was designed to integrate with multinomial logistic model to illustrate and visualize the predicted land use surface. The multinomial logistic model was evaluated by means of Likelihood ratio test and Pseudo R-Square and showed a relatively good simulation. The prediction map of 2010 showed accurate rates 78.54%, 57.25% and 70.38%, respectively.


Author(s):  
L. N. Izzah ◽  
Z. Majid ◽  
M. A. M. Ariff ◽  
C. K. Fook

Human modification of the natural environment continues to create habitats in which vectors of a wide variety of human and animal pathogens (such as Plasmodium, Aedes aegypti, Arenavirus etc.) thrive if unabated with an enormous potential to negatively affect public health. Typical examples of these modifications include impoundments, dams, irrigation systems, landfills and so on that provide enabled environment for the transmission of Hemorrhagic fever such as malaria, dengue, avian flu, Lassa fever etc. Furthermore, contemporary urban dwelling pattern appears to be associated with the prevalence of Hemorrhagic diseases in recent years. These observations are not peculiar to the developing world, as urban expansion also contributes significantly to mosquito and other vectors habitats. This habitats offer breeding ground to some vector virus populations. The key to disease control is developing an understanding of the contribution of human landscape modification to vector-borne pathogen transmission and how a balance may be achieved between human development, public health, and responsible urban land use. A comprehensive review of urban land use Pattern Analysis for Hemorrhagic fever risk has been conducted in this paper. The study found that most of the available literatures dwell more on the impact of urban land use on malaria and dengue fevers; however, studies are yet to be found discussing the implications of urban land use on the risk of Ebola, Lassa and other non-mosquito borne VHFs. A relational model for investigating the influence of urban land use change pattern on the risk of Hemorrhagic fever has been proposed in this study.


2019 ◽  
Vol 46 ◽  
pp. 101417 ◽  
Author(s):  
Chaham Alalouch ◽  
Sara Al-Hajri ◽  
Abeer Naser ◽  
Asma Al Hinai

2020 ◽  
Vol 12 (9) ◽  
pp. 1497 ◽  
Author(s):  
Mo Su ◽  
Renzhong Guo ◽  
Bin Chen ◽  
Wuyang Hong ◽  
Jiaqi Wang ◽  
...  

A heavy workload is required for sample collection for urban land use classification, and researchers are in urgent need of sampling strategies as a guide to achieve more effective work. In this paper, we make use of an urban land use survey to obtain a complete sample set of a city, test the impact of different training and validation sample sizes on the accuracy, and summarize the sampling strategy. The following conclusions are drawn based on our systematic analysis in Shenzhen. (1) For the best classification accuracy, the number of training samples should be no less than 40% of the total number of parcels or no less than 5500 parcels. For the best labor cost performance, the number should be no less than 7% or no less than 900. (2) The accuracy evaluation is stable and reliable and requires validation sample numbers of no less than 10% of the total or no less than 1200. (3) Samples with a purity of 60–90% are preferred, and the classification effectiveness is better in samples with a purity greater than 90% under the same number. (4) If spatial equilibrium sampling cannot be carried out, sampling areas with complex land use patterns should be preferred.


Sign in / Sign up

Export Citation Format

Share Document