scholarly journals Molecular Identification Of Trichoderma Strains Collected To Develop Plant Growth-Promoting And Biocontrol Agents

2015 ◽  
Vol 23 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Michał Oskiera ◽  
Magdalena Szczech ◽  
Grzegorz Bartoszewski

AbstractTrichoderma strains that are beneficial to both the growth and health of plants can be used as plant growth-promoting fungi (PGPF) or biological control agents (BCA) in agricultural and horticultural practices. In order to select PGPF or BCA strains, their biological properties and taxonomy must be carefully studied. In this study, 104 strains of Trichoderma collected at geographically different locations in Poland for selection as PGPF or BCA were identified by DNA barcoding, based on the sequences of internal transcribed spacers 1 and 2 (ITS1 and 2) of the ribosomal RNA gene cluster and on the sequences of translation elongation factor 1 alpha (tef1), chitinase 18-5 (chi18-5), and RNA polymerase II subunit (rpb2) gene fragments. Most of the strains were classified as: T. atroviride (38%), T. harzianum (21%), T. lentiforme (9%), T. virens (9%), and T. simmonsii (6%). Single strains belonging to T. atrobrunneum, T. citrinoviride, T. crassum, T. gamsii, T. hamatum, T. spirale, T. tomentosum, and T. viridescens were identified. Three strains that are potentially pathogenic to cultivated mushrooms belonging to T. pleuroticola and T. aggressivum f. europaeum were also identified. Four strains: TRS4, TRS29, TRS33, and TRS73 were classified to Trichoderma spp. and molecular identification was inconclusive at the species level. Phylogeny analysis showed that three of these strains TRS4, TRS29, and TRS33 belong to Trichoderma species that is not yet taxonomically established and strain TRS73 belongs to the T. harzianum complex, however, the species could not be identified with certainty.

2021 ◽  
Author(s):  
Debora Guterres ◽  
Roberto Ramos-Sobrinho ◽  
Danilo B. Pinho ◽  
Iraildes P. Assunção ◽  
Gaus S.A. Lima

Abstract Fungal species belonging to the genus Balansia (Clavicipitaceae) are well known as endophytic and epibiotic species commonly found on grasses or sedges. Among the 36 species of Balansia described worldwide, ten have been reported in Brazil. While most species of balansoid fungi were described on graminaceous plants, only four were characterized on cyperaceous hosts. To correctly identify the species of balansoid fungi associated with Scleria bracteata (Cyperaceae), specimens were collected in the state of Alagoas, Brazil, in 2014 and 2016. Nucleotide partial sequences of the second-largest subunit of RNA polymerase II (RPB2), translation elongation factor 1-α (TEF1), 18S subunit ribosomal DNA (SSU), 28S subunit ribosomal DNA (LSU), and internal transcribed spacers (ITS) were obtained from each balansoid specimen. Based on morphology and molecular data, the specimens were identified as a putative new species of Balansia, herein referred to as Balansia scleriae sp. nov.


2021 ◽  
Author(s):  
P. Ramya ◽  
Gomathi V ◽  
Parimala devi ◽  
Balachandar D

Abstract Soil yeasts exhibit an array of beneficial effects to plants viz., plant growth promotion, phosphate solubilization, nitrogen and sulphur oxidation, etc. Yeasts remain as poorly investigated group of microorganisms that represent an abundant and dependable source of bioactive/chemically novel compounds and potential bioinoculants. Hence this study holds the key concept of assessing the performance of soil yeasts with potential plant growth promoting ability in soil quality improvement. Sixteen soil yeast isolates with plant growth promoting traits were assessed for biofilm forming potential and five potential soil yeast isolates were selected and identified through molecular technique. Soil incubation study was performed with these isolates to assess their impact on soil physical, chemical and biological properties. Due to inoculation of soil yeasts, notable changes were observed in soil physical, chemical and biological properties. Among the soil yeast isolates, Pichia kudriavzevii gave better results in soil incubation study.


2020 ◽  
Vol 21 (1) ◽  
pp. 14-19
Author(s):  
Praptiningsih Gamawati Adinurani ◽  
Sri Rahayu ◽  
Nurul Fima Zahroh

Mikroba Bacillus subtilis merupakan agen pengendali hayati mempunyai kelebihan sebagai Plant Growth Promoting Rhizobacteria (PGPR) yaitu dapat berfungsi sebagai biofertilizer, biostimulan, biodekomposer dan bioprotektan. Tujuan penelitian mengetahui potensi B. subtilis dalam merombak bahan organik sebagai usaha meningkatkan ketersediaan bahan organik tanah yang semakin menurun. Penelitian menggunakan Rancangan Petak Terbagi dengan berbagai  bahan organik sebagai petak utama (B0 = tanpa bahan organik, B1 = kotoran ayam,  B2 = kotoran kambing, B3 = kotoran sapi) dan aplikasi B.subtilis sebagai anak petak (A0 = 0 cc/L, A1 = 5cc/L, A2 = 10 cc/L, Pengamatan meliputi variabel tinggi tanaman, indeks luas daun, jumlah buah per tanaman, berat buah per tanaman, dan bahan organik tanah. Data pengamatan  dianalisis ragam  menggunakan  Statistical Product and Service Solutions (SPSS) versi 25 dan dilanjutkan dengan uji Duncan untuk mengetahui signifikansi perbedaan antar perlakuan. Hasil penelitian menunjukkan tidak terdapat interaksi antara bahan organik kotoran ternak dan konsentrasi B. subtilis terhadap semua variabel pengamatan. Potensi B. subtilis sangat baik dalam mendekomposisi bahan organik yang ditunjukkan dengan peningkatan bahan organik, dan hasil terbaik pada kotoran  sapi (B3) dan konsentrasi B. subtilis 15 mL/L masing-masing sebesar 46.47 % dan 34.76 %. Variabel pertumbuhan tidak berbeda nyata kecuali tinggi tanaman dengan pertambahan tinggi paling banyak pada pemberian kotoran kambing sebesar 170.69 %.


Sign in / Sign up

Export Citation Format

Share Document