Separation of Tegafur and its Impurities by Reversed-Phase High-Perfomance Liquid Chromatography

2014 ◽  
Vol 52 (1-2) ◽  
pp. 54-60
Author(s):  
O. Rotkaja ◽  
J. Golushko ◽  
K. Kuprevics

Abstract The chromatographic behavior of tegafur and its impurities on a naphthalene Cosmosil piNAP column under reversed-phase high-performance liquid chromatography conditions was examined. A good description of the retention was achieved through the application of statistical weights to the widely used quadratic relationships between the logarithm of the retention factor (log k) and the organic solvent concentration in the mobile phase. Optimum conditions for isocratic separation of the compounds were found with acetonitrile concentration of 10-30% in the mobile phase

1994 ◽  
Vol 59 (3) ◽  
pp. 569-574 ◽  
Author(s):  
Josef Královský ◽  
Marta Kalhousová ◽  
Petr Šlosar

The reversed-phase high-performance liquid chromatography of some selected, industrially important aromatic sulfones has been investigated. The chromatographic behaviour of three groups of aromatic sulfones has been studied. The optimum conditions of separation and UV spectra of the sulfones and some of their hydroxy and benzyloxy derivatives are presented. The dependences of capacity factors vs methanol content in mobile phase are mentioned. The results obtained have been applied to the quantitative analysis of different technical-grade samples and isomer mixtures. For all the separation methods mentioned the concentration ranges of linear calibration curves have been determined.


2012 ◽  
Vol 10 (1) ◽  
pp. 216-223 ◽  
Author(s):  
Marcin Koba ◽  
Mariusz Belka ◽  
Tomasz Ciesielski ◽  
Tomasz Bączek

AbstractThe lipophilicity values of selected acridinone (imidazoacridinone and triazoloacridinone) derivatives were measured by gradient reversed-phase high-performance liquid chromatography (RP-HPLC) using a C18 stationary phase with a water/acetonitrile mixture as a mobile phase. The retention times obtained served as input data and appropriate log kw values (i.e., the retention factor log kw extrapolated to 0% organic modifier) as an alternative to log P were calculated using the DryLab program. The relationships between the lipophilicity (log kw) and the chemical structure of the studied compounds, as well as correlation between experimentally determined lipophilicities (log kw) and log P data calculated using some commonly available software, are discussed.


1977 ◽  
Vol 23 (12) ◽  
pp. 2288-2291 ◽  
Author(s):  
P H Culbreth ◽  
I W Duncan ◽  
C A Burtis

Abstract We used paired-ion high-performance liquid chromatography to determine the 4-nitrophenol content of 4-nitrophenyl phosphate, a substrate for alkaline phosphatase analysis. This was done on a reversed-phase column with a mobile phase of methanol/water, 45/55 by vol, containing 3 ml of tetrabutylammonium phosphate reagent per 200 ml of solvent. At a flow rate of 1 ml/min, 4-nitrophenol was eluted at 9 min and monitored at 404 nm; 4-nitrophenyl phosphate was eluted at 5 min and could be monitored at 311 nm. Samples of 4-nitrophenyl phosphate obtained from several sources contained 0.3 to 7.8 mole of 4-nitrophenol per mole of 4-nitrophenyl phosphate.


1999 ◽  
Vol 82 (6) ◽  
pp. 1308-1315 ◽  
Author(s):  
Francisco García Sánchez ◽  
Aurora Navas Díaz ◽  
Angeles García Pareja ◽  
Germán Cabrera Montiel

Abstract High-performance liquid chromatography using a combination of photometric, fluorimetric, and diode-laser polarimetric detectors in series for the determination of (+)-quinidine and (–)-quinine was investigated. An RP-8 reversed-phase column and methanol-water (80 + 20, v/v) with 0.2% triethylamine as mobile phase at a flow rate of 1 mL/min were used. A dynamic range of 0-200 μg for (+)-quinidine and (+)-quinine was established, with detection limits of 17.0 and 16.7 μg, respectively. An application of this method in spiked rabbit serum was developed.


Author(s):  
Muhammad Fawad Rasool ◽  
Umbreen Fatima Qureshi ◽  
Nazar Muhammad Ranjha ◽  
Imran Imran ◽  
Mouqadus Un Nisa ◽  
...  

AbstractTh accurate rapid, simple and selective reversed phase high performance liquid chromatography (RP-HPLC) has been established and validated for the determination of captopril (CAP). Chromatographic separation was accomplished using prepacked ODSI C18 column (250 mm × 4.6 mm with 5 μm particle size) in isocratic mode, with mobile phase consisting of water: acetonitrile (60:40 v/v), pH adjusted to 2.5 by using 85% orthophosphoric acid at a flow rate of 1 mL/min and UV detection was performed at 203 nm. RP-HPLC method used for the analysis of CAP in mobile phase and rabbit plasma was established and validated as per ICH-guidelines. It was carried out on a well-defined chromatographic peak of CAP was established with a retention time of 4.9 min and tailing factor of 1.871. The liquid–liquid extraction method was used for extraction of CAP from the plasma. Excellent linearity (R2 = 0.999) was shown over range 3.125–100 µg/mL with mean percentage recoveries ranges from 97 to 100.6%. Parameters of precision and accuracy of the developed method meet the established criteria. Intra and inter-day precision (% relative standard deviation) study was also performed which was less than 2% which indicate good reproducibility of the method. The limit of detection (LOD) and quantification for the CAP in plasma were 3.10 and 9.13 ng/mL respectively. The method was suitably validated and successfully applied to the determination of CAP in rabbit plasma samples.


Author(s):  
Mannem Durga Babu ◽  
Kesana Surendrababu

Objective: The objective of the study was to develop and validate a novel, specific, precise, and simple reversed-phase high-performance liquid chromatography method for the estimation of guaifenesin present in methocarbamol API and its pharmaceutical dosage forms. Methods: The baseline separation for methocarbamol and guaifenesin was achieved by utilizing a Inertsil ODS C18 (250 mm × 4.6 mm) 5 μm column particle size and an isocratic elution method. The mobile phase contains a mixture of water and acetonitrile in the ratio of 70:30 v/v, respectively. The flow rate of the mobile phase was 1.0 mL/min with a column temperature of 25°C and detection wavelength at 272 nm. The method was validated for a limit of detection (LOD), limit of quantification (LOQ), linearity, accuracy, and reproducibility with the help of the exhibit and simulated samples. Results: The LOD for guaifenesin was 0.62 μg/mL. The LOQ for guaifenesin was 1.87 μg/mL. The correlation coefficient obtained for impurity was >0.99. The recovery was obtained for impurity was 106.56% at 50%, 95.20% at 100%, and 100.45% at 150%. In tablet analysis, we can found 0.26% (<0.5%). Conclusion: The developed method was validated as per the ICH guidelines with respect to specificity, precision, linearity, accuracy, LOD and quantification, ruggedness, robustness, and solution stability.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 640 ◽  
Author(s):  
Bruno Cerra ◽  
Antonio Macchiarulo ◽  
Andrea Carotti ◽  
Emidio Camaioni ◽  
Ina Varfaj ◽  
...  

In the present work, we illustrate the ability of high-performance liquid chromatography (HPLC) analysis to assist the synthesis of chiral imidazolines within our medicinal chemistry programs. In particular, a Chiralpak® IB® column containing cellulose tris(3,5-dimethylphenylcarbamate) immobilized onto a 5 μm silica gel was used for the enantioselective HPLC analysis of chiral imidazolines synthesized in the frame of hit-to-lead explorations and designed for exploring the effect of diverse amide substitutions. Very profitably, reversed-phase (RP) conditions succeeded in resolving the enantiomers in nine out of the 10 investigated enantiomeric pairs, with α values always higher than 1.10 and RS values up to 2.31. All compounds were analysed with 50% (v) water while varying the content of the two organic modifiers acetonitrile and methanol. All the employed eluent systems were buffered with 40 mM ammonium acetate while the apparent pH was fixed at 7.5. Based on the experimental results, the prominent role of π-π stacking interactions between the substituted electron-rich phenyl groups outside of the polymeric selector and the complementary aromatic region in defining analyte retention and stereodiscrimination was identified. The importance of compound polarity in explaining the retention behaviour with the employed RP system was readily evident when a quantitative structure-property relationship study was performed on the retention factor values (k) of the 10 compounds, as computed with a 30% (v) methanol containing mobile phase. Indeed, good Pearson correlation coefficients of retention factors (r - log k1st = −0.93; r - log k2nd = −0.94) were obtained with a water solubility descriptor (Ali-logS). Interestingly, a n-hexane/chloroform/ethanol (88:10:2, v/v/v)-based non-standard mobile phase allowed the almost base-line enantioseparation (α = 1.06; RS = 1.26) of the unique compound undiscriminated under RP conditions.


Sign in / Sign up

Export Citation Format

Share Document