scholarly journals Blades Interaction and Non-Stationarity of Flow in Vertical-Axial Wind Turbines

2021 ◽  
Vol 29 (4) ◽  
pp. 280-286
Author(s):  
Ludmila Rozhkova ◽  
Tibor Krenicky ◽  
Eduard Kuznetsov ◽  
Volodymyr Nahornyi

Abstract Until recently, horizontal-axial wind turbines with blades having a wing profile occupied a predominant position in the world wind energy market. But currently, vertical-axial wind units are of increasing interest and this is understandable from the point of view of their important features as: no requirements for the orientation of the wind turbine to the wind, the possibility of placing electrical and other equipment on the ground, no requirements for changes of blade chord installation angle along its length. The article discusses the aerodynamics of the vertical-axis wind turbines: the range of changes of angles of incoming flow attack on the blade, the dynamics of changes in the magnitude of the absolute speed of flow of the blade on a circular trajectory of its movement depending on the turbine rapidity, and also obtained in experiments interaction effect of the blades in the rotor. The experiments were carried out on wind turbines with original blades (basic version), which were designed to eliminate the shortcomings of low-speed rotors Savonius (low coefficient of use of wind energy) and high-speed rotors Darrieus (lack of self-start).

2020 ◽  
Vol 12 (18) ◽  
pp. 7818
Author(s):  
Jose Alberto Moleón Baca ◽  
Antonio Jesús Expósito González ◽  
Candido Gutiérrez Montes

This paper presents a numerical and experimental analysis of the patent of a device to be used in vertical-axis wind turbines (VAWTs) under extreme wind conditions. The device consists of two hemispheres interconnected by a set of conveniently implemented variable section ducts through which the wind circulates to the blades. Furthermore, the design of the cross-section of the ducts allows the control of the wind speed inside the device. These ducts are intended to work as diffusers or nozzles, depending on the needs of the installation site. Simulations were performed for the case of high-speed external wind, for which the ducts act as diffusers to reduce wind speed and maintain a well-functioning internal turbine. Four different patent designs were analyzed, focusing on turbine performance and generated power. The results indicate that the patent allows the generation of electric power for a greater range of wind speeds than with a normal wind turbine. The results support that this patent may be a good alternative for wind power generation in geographic areas with extreme weather conditions or with maintained or strong gusty wind. Experimental tests were carried out on the movement of the blades using the available model. Finally, the power curve of the model of this wind turbine was obtained.


2015 ◽  
Vol 793 ◽  
pp. 388-392
Author(s):  
Farhan Ahmed Khammas ◽  
Kadhim Hussein Suffer ◽  
Ryspek Usubamatov ◽  
Mohmmad Taufiq Mustaffa

This paper reviews the available types of wind turbine which is one of the wind energy applications. The authors intend to give investors a better idea of which turbine is suitable for a particular setting and to provide a new outlook on vertical axis wind turbines. Wind technology has grown substantially since its original use as a method to grind grains and will only continue to grow. Vertical-axis wind turbines are more compact and suitable for residential and commercial areas while horizontal-axis wind turbines are more suitable for wind farms in rural areas or offshore. However, technological advances in vertical axis wind turbines that are able to generate more energy with a smaller footprint are now challenging the traditional use of horizontal wind turbines in wind farms. Vertical axis wind turbines do not need to be oriented to the wind direction and offer direct rotary output to a ground-level load, making them particularly suitable for water pumping, heating, purification and aeration, as well as stand-alone electricity generation. The use of high efficiency Darrieus turbines for such applications is virtually prohibited by their inherent inability to self-start.


Author(s):  
Sukanta Roy ◽  
Hubert Branger ◽  
Christopher Luneau ◽  
Denis Bourras ◽  
Benoit Paillard

The rapid shrinkage of fossil fuel sources and contrary fast-growing energy needs of social, industrial and technological enhancements, necessitate the need of different approaches to exploit the various renewable energy sources. Among the several technological alternatives, wind energy is one of the most emerging prospective because of its renewable, sustainable and environment friendly nature, especially at its offshore locations. The recent growth of the offshore wind energy market has significantly increased the technological importance of the offshore vertical axis wind turbines, both as floating or fixed installations. Particularly, the class of lift-driven vertical axis wind turbines is very promising; however, the existing design and technology is not competent enough to meet the global need of offshore wind energy. In this context, the project AEROPITCH co-investigated by EOLFI, CORETI and IRPHE aims at the development of a robust and sophisticated offshore vertical axis wind turbine, which would bring decisive competitive advantage in the offshore wind energy market. In this paper, simulations have been performed on the various airfoils of NACA 4-series, 5-series and Selig profiles at different chord Reynolds numbers of 60000, 100000 and 140000 using double multiple streamtube model with tip loss correction. Based on the power coefficient, the best suitable airfoil S1046 has been selected for a 3-bladed vertical axis wind turbine. Besides the blade profile, the turbine design parameters such as aspect ratio and solidity ratio have also been investigated by varying the diameter and chord of the blade. Further, a series of wind tunnel experiments will be performed on the developed wind turbine, and the implementation of active pitch control in the developed turbine will be investigated in future research.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2286
Author(s):  
Yutaka Hara ◽  
Yoshifumi Jodai ◽  
Tomoyuki Okinaga ◽  
Masaru Furukawa

To investigate the optimum layouts of small vertical-axis wind turbines, a two-dimensional analysis of dynamic fluid body interaction is performed via computational fluid dynamics for a rotor pair in various configurations. The rotational speed of each turbine rotor (diameter: D = 50 mm) varies based on the equation of motion. First, the dependence of rotor performance on the gap distance (gap) between two rotors is investigated. For parallel layouts, counter-down (CD) layouts with blades moving downwind in the gap region yield a higher mean power than counter-up (CU) layouts with blades moving upwind in the gap region. CD layouts with gap/D = 0.5–1.0 yield a maximum average power that is 23% higher than that of an isolated single rotor. Assuming isotropic bidirectional wind speed, co-rotating (CO) layouts with the same rotational direction are superior to the combination of CD and CU layouts regardless of the gap distance. For tandem layouts, the inverse-rotation (IR) configuration shows an earlier wake recovery than the CO configuration. For 16-wind-direction layouts, both the IR and CO configurations indicate similar power distribution at gap/D = 2.0. For the first time, this study demonstrates the phase synchronization of two rotors via numerical simulation.


Sign in / Sign up

Export Citation Format

Share Document