scholarly journals Application of an Improved Empirical Model for Rheology Prediction of Cement Pastes Modified with Filler from Manufactured Sand

2021 ◽  
Vol 65 (2) ◽  
pp. 1-18
Author(s):  
Elisabeth Leite Skare ◽  
Rolands Cepuritis ◽  
Ernst Mørtsell ◽  
Sverre Smeplass ◽  
Jon Spangenberg ◽  
...  

Abstract There is a need for simple but precise prediction models for proportioning concrete with manufactured sand, for use in ready-mix concrete production. For the last two decades, the particle-matrix model has been used in Norway for proportioning and prediction of concrete flow based on the properties and proportions of two concrete phases: coarse particles and filler modified cement paste (matrix). This paper presents experimental testing of 117 cement pastes of which 107 contain filler, i.e. particles < 125 microns, from manufactured sand. Based on compositions and properties of ingoing materials in these mixes, an empirical equation is developed that predicts the rheological properties plastic viscosity, yield stress, flow resistance ratio and mini slump flow. Optimization by regression analysis provides a practical microproportioning equation that readily can be used as input in concrete proportioning with the particle-matrix model. The equation provides a coefficient of determination R2 = 0.98 for plastic viscosity, R2 = 0.95 for mini slump flow, R2 = 0.91 for flow resistance ratio and R2 = 0.80 for yield stress.

2020 ◽  
Vol 30 (1) ◽  
pp. 54-63
Author(s):  
Willy Mbasha ◽  
Rainer Haldenwang ◽  
Irina Masalova

AbstractNatural gypsum can degenerate into hemihydrate during cement clinker grinding which changes the physical and chemical properties of cement hydration, affecting therefore the fresh and hardened properties of cement based materials. Cement systems containing a constant total amount of calcium sulfate (4%) with relative proportions of hemihydrate and natural gypsum were considered. Rheological measurements were executed on an Anton Paar MCR51 rheometer to evaluate the flow properties of cement pastes. Results show that, the yield stress and the plastic viscosity of cement pastes were affected when the degeneration of natural gypsum exceeded 50%. Above this concentration, the yield stress remarkably increased and a variation in plastic viscosity of about 50% was observed. Using TG-DSC techniques, it was shown that, the amount of formed ettringite could not explain these rheological changes. However, centrifugational packing and SEM-SE measurements confirmed that, more than the amount of ettringite precipitated, ettringite morphology plays a major role in controlling the yield stress and plastic viscosity of fresh cement pastes.


2019 ◽  
Vol 65 (3) ◽  
pp. 75-86
Author(s):  
J. Gołaszewski ◽  
G. Cygan ◽  
M. Gołaszewska

AbstractThe article is an attempt to compare the impact of the use of various types of limestone as the main constituent of cement on selected mortar properties. Four different limestones were added in amount of 15, 30, 40% to CEM I 42.5 R to obtain limestone cemens. Rheological properties (yield stress, plastic viscosity) of fresh mortar, tensile and compressive mortar strength, early shrinkage, and drying shrinkage were tested. Obtained results indicate that both tensile and compressive strength decreases with the increase of the limestone content in cement. Limestone can worsen or improve workability, depending on distribution of limestone grains. The addition of limestone increases the early shrinkage, but reduces the shrinkage after 28 days. Studies show that the granulation of limestone plays an important role in determining the influence of limestone on mortar properties.


2021 ◽  
Author(s):  
Rajeshkumar Patel

Self-consolidating concrete (See), a latest version of high performance concrete, has created tremendous interest today as it can be easily placed in congested reinforced concrete structures with difficult casting conditions. It also reduces the construction time and cost of the labor. Normally see is being developed using a superplasticizer to generate desired flow and a viscosity modifying admixture (VMA) to prevent segregation in the concrete. In this research project, instead of VMA, high volumes of fly ash were used along with superplasticizer to develop see. The minimum use of superplasticizer and optimum use of fly ash were desired to achieve required properties of see. The fly ash is expected to be useful not only in generating the flow but as segregation resistance as well. The aim of the present research project was to develop see for sustainable construction by optimizing the use of high volumes of fly ash with some proposed statistical models. The rheological study for paste and mortar was carried out first, and Bingham model parameters such as plastic viscosity and yield stress were correlated with the marsh cone flow of paste and fresh concrete properties such as slump flow and filling capacity. The limits for plastic viscosity, yield stress, and specific marsh cone flow of paste and mortar were identified for concrete mixes to be qualified for see. Four independent variables such as total binder content (limit 350 to 450 kg/m3), percentage of fly ash replacing cement (limit 30 to 60 %), % of superplasticizer (limit 0.1 to 0.6 %), and W/B (limit 0.33 to 0.45) were considered for design of experiment and for development of statistical models for see. Statistically balanced twenry-one concrete mixes were chosen and fresh concrete tests such as slump and slump flow, V -funnel flow, filling capacity, L-box, bleeding, air content, segregation, and initial and final setting time tests were performed. Seven harden concrete tests (for mechanical characteristics and durability) such as compressive strength (1, 7, 28-day), freezing and thawing cycles resistance, surface scaling resistance, rapid chloride permeability, modulus of elasticity, flexural strength, and drying shrinkage were performed to evaluate the performance of see. Five statistical models for important properties of see such as slump flow, I-day strength, 28-day strength, rapid chloride permeability, and material cost were developed. The limits of rheological parameters of pastes and mortars can be useful to predict the flow behavior of see and the proposed models can be useful to design and optimize see mixes incorporating high volumes of fly ash.


2021 ◽  
Author(s):  
Rajeshkumar Patel

Self-consolidating concrete (See), a latest version of high performance concrete, has created tremendous interest today as it can be easily placed in congested reinforced concrete structures with difficult casting conditions. It also reduces the construction time and cost of the labor. Normally see is being developed using a superplasticizer to generate desired flow and a viscosity modifying admixture (VMA) to prevent segregation in the concrete. In this research project, instead of VMA, high volumes of fly ash were used along with superplasticizer to develop see. The minimum use of superplasticizer and optimum use of fly ash were desired to achieve required properties of see. The fly ash is expected to be useful not only in generating the flow but as segregation resistance as well. The aim of the present research project was to develop see for sustainable construction by optimizing the use of high volumes of fly ash with some proposed statistical models. The rheological study for paste and mortar was carried out first, and Bingham model parameters such as plastic viscosity and yield stress were correlated with the marsh cone flow of paste and fresh concrete properties such as slump flow and filling capacity. The limits for plastic viscosity, yield stress, and specific marsh cone flow of paste and mortar were identified for concrete mixes to be qualified for see. Four independent variables such as total binder content (limit 350 to 450 kg/m3), percentage of fly ash replacing cement (limit 30 to 60 %), % of superplasticizer (limit 0.1 to 0.6 %), and W/B (limit 0.33 to 0.45) were considered for design of experiment and for development of statistical models for see. Statistically balanced twenry-one concrete mixes were chosen and fresh concrete tests such as slump and slump flow, V -funnel flow, filling capacity, L-box, bleeding, air content, segregation, and initial and final setting time tests were performed. Seven harden concrete tests (for mechanical characteristics and durability) such as compressive strength (1, 7, 28-day), freezing and thawing cycles resistance, surface scaling resistance, rapid chloride permeability, modulus of elasticity, flexural strength, and drying shrinkage were performed to evaluate the performance of see. Five statistical models for important properties of see such as slump flow, I-day strength, 28-day strength, rapid chloride permeability, and material cost were developed. The limits of rheological parameters of pastes and mortars can be useful to predict the flow behavior of see and the proposed models can be useful to design and optimize see mixes incorporating high volumes of fly ash.


2020 ◽  
Vol 32 (2) ◽  
pp. 165-171
Author(s):  
Tae Yong Shin ◽  
Seong Ho Han ◽  
Jae Hong Kim

Author(s):  
Mien Tran ◽  
Yen Cu

Nowadays, self-compacting concrete (SCC) is widely being used for supertall building construction in Vietnam. With high workability, SCC allows us to speed up pumping, placing, and surface finishing, which results in a reduction in building cost. Popular methods such as slump flow, T500, and V funnel test are used to indirectly determine rheological properties of SCC. However, these methods do not present yield stress and plastic viscosity, which are the most parameters affecting the pumping property. In this paper, the SCC rheology is determined directly through yield stress and plastic viscosity with the flow curve test and stress growth test by using the rheometer equipment. Thereby, limitation of the yield stress and the plastic viscosity is recommended for vertically pumping to supertall building project without segregation and bleeding.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yuxia Guo ◽  
Peng Wang ◽  
Guorui Feng ◽  
Tingye Qi ◽  
Guoyan Liu ◽  
...  

Coal gangue-based cemented backfill material (CGCBM) is developed for backfilling the goaf in coal mines. As fresh CGCBM slurry is generally transported into underground openings through a pipeline, and after hardening, it plays the role of supporting the overlying strata. The fluidity, stability, and mechanical (compressive strength) of CGCBM become the most important properties. Adding water-reducing agents (WRAs) is considered to improve the fluidity, stability, and mechanical properties of CGCBM, but there is a risk of increased bleeding. So, two types of WRA (naphthalene series (WRA1) and poly carboxylic acid (WRA2)) are used at different contents (1.0%-2% for WRA1, 0.2%–0.6% for WRA2) by mass of binder. Slump, slump flow, yield stress, and plastic viscosity test are used to evaluate the fluidity properties of CGCBM after adding WRA. Bleeding rate test is used to evaluate the stability of CGCBM after adding WRA. Compressive strength is the most important factor in measuring the mechanical properties. SEM and XRD tests are used to analyse the mechanism of strength change. Results show that the slump, slump flow, and plastic viscosity increase after adding WRA, which reduces the yield stress and improves the fluidity. The bleeding rate increases with the increase of WRA content, leading to a decrease in stability. Adding WRA increases the compressive strength, and it increases first and then decreases with the increase of the content at the later stage. Considering the effects of WRA on the fluidity, stability, and compressive strength properties of CGCBM, the reasonable content of WRA1 and WRA2 is 1.5% and 0.4%, respectively. The research results provide guidance for the design and preparation of CGCBM with favourable performance in practical production.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Gintautas Skripkiunas ◽  
Ekaterina Karpova ◽  
Irmantas Barauskas ◽  
Joana Bendoraitiene ◽  
Grigory Yakovlev

The evaluation of rheological properties of cement systems is getting more relevant with growing interest to self-consolidating concrete (SCC), high-performance concrete (HPC) and ultrahigh-performance concrete (UHPC). The rheology models are a perspective tool to predict and manage the properties of cement systems in the fresh and hardened state. The current research is focused on the rheological test of cement systems modified by multiwalled carbon nanotubes (MWCNT) dispersion with and without polycarboxylate ether (PCE). The content of dispersion with 1% concentration of MWCNT in cement pastes varied from 0.125 to 0.5% by weight of cement. The dosage of PCE was taken as 0.6% by weight of cement. The cement pastes were prepared based on Portland cement without mineral additives. The rheological test was carried out at 5, 30, 60, and 120 min after mixing of cement paste. The rheological test established that modification of cement pastes by MWCNT dispersion in dosage 0.25% leads to the decrease of yield stress by 30.7% and increase of plastic viscosity by 29.6%. The combined modification by PCE and MWCNT dispersion shows the decrease in plastic viscosity of cement pastes by 9.90% in dosage of MWCNT equal to 0.5% by weight of cement, reduction of water demand by 20% for the same workability, and decrease of yield stress till 0 Pa. It gives the ability to obtain the self-compacting mixtures. The cement pastes with and without MWCNT dispersion revealed the shear-thinning behavior during 120 min after mixing. The modification of cement pastes by PCE with and without MWCNT dispersion showed the shear-thickening behavior which remains during 120 min after mixing.


2014 ◽  
Vol 629-630 ◽  
pp. 399-404 ◽  
Author(s):  
Kaliprasanna Sethy ◽  
Dinakar Pasla ◽  
Umesh C. Sahoo

This study deals mainly deals with the rheological and strength properties of self-compacting concrete (SCC) incorporating high volume replacements of slag. Plastic viscosity and yield stress were evaluated using ICAR rheometer. The effect of high range water reducing admixture (HRWR) dosage, the time to reach 500 mm diameter (T50), the final slump flow, V-funnel flow times and L-box blocking ratio were also investigated and studied in this research program. The results show that the plastic viscosity decreases with the increase of the percentage of slag and the yield stress was nearly zero for all the replacements studied. The compressive strengths determined for the SCCs demonstrate that high strength SCC of more than 100 MPa can be realized by using slag appropriately.


2019 ◽  
Vol 29 (1) ◽  
pp. 130-140 ◽  
Author(s):  
Florian Gerland ◽  
Alexander Wetzel ◽  
Thomas Schomberg ◽  
Olaf Wünsch ◽  
Bernhard Middendorf

Abstract Modern concretes such as ultra-high performance concrete (UHPC) show excellent strength properties combined with favorable flow properties. However, the flow properties depend strongly on process parameters during production (temperature, humidity etc.), but also change sensitively even with slight variations in the mixture. In order to ensure desired processing of the fluidlike material and consistent process quality, the flow properties of the concrete must be evaluated quantitatively and objectively. The usual evaluation of measurements from concrete rheometers, for example of the ball probe system type, does not allow the direct determination of the objective material parameters yield stress and plastic viscosity of the sample. We developed a simulation-based method for the evaluation of rheometric measurements of fine grained high performance concretes like self-compacting concrete (SCC) and UHPC. The method is based on a dimensional analysis for ball measuring systems. Through numerical parameter studies we were able to describe the identified relationship between measuring quantities and material parameters quantitatively for two devices of this type. The evaluation method is based on the Bingham model. With this method it is possible to measure both the yield stress and the plastic viscosity of the fresh sample simultaneously. Device independence of the evaluation process is proven and an application to fiber-reinforced UHPC is presented.


Sign in / Sign up

Export Citation Format

Share Document