scholarly journals Experimental Study of Slamming Effects on Wedge and Cylindrical Surfaces

2020 ◽  
Vol 10 (4) ◽  
pp. 1503
Author(s):  
Byoungcheon Seo ◽  
Hyunkyoung Shin

Slamming is a very significant phenomenon that occurs in marine structures operating under extreme conditions. Slamming significantly reduces the design life of floating offshore wind turbines, as well as marine structures, and causes structural damage. Thus, the slamming load should be considered sufficiently during the design phase of the structure, and the results of experiments of good quality should be incorporated. The phenomenon of slamming should be analyzed using peak pressure, width, duration, and dynamic loads that depend on the design and natural frequency of the structure. In the case of a slamming experiment, the deadrise angle shows the greatest pressure between 3° to 10°. In this study, pressure values were compared using a model with a deadrise angle of 10° and a cylinder model most commonly used for the fabrication and installation of offshore structures. The peak pressure of the cylindrical model is greater than those of the flat model and the wedge model with a 10° deadrise angle. Pressure and strain were measured using free drops from heights of 1.0 and 1.7 m from the water surface, and the elastic effects were studied accordingly. Also, the peak pressure due to a slamming impact occurs several times depending on the natural frequency of the structure. In order to understand the behavior of the structure against the elastic effect, the second peak in the experimental results was theoretically and experimentally analyzed. The second pressure peak is greater than the first pressure peak due to the elastic behavior effects based on the natural frequency of models used in the slamming test. Also, a single slamming results in several peak pressures and it greatly deteriorates the fatigue strength. Experiments and simulations were carried out to derive the effects of repeated slamming loads on the structure. In the structural design considering the slamming loads, information on the elastic effect of the structure and accumulated loads is very important. This can be an important variable in the design of the floater and can play an important role in assessing the impact on the floater. These results raise questions as to the extent that slamming pressures are replaced with equivalent hydrostatic pressures in most design rules of the recognized certification society.


2014 ◽  
Vol 564 ◽  
pp. 176-181
Author(s):  
S.T. Cheng ◽  
Nawal Aswan Abdul Jalil ◽  
Zamir A. Zulkefli

Vibration based technique have so far been focused on the identification of structural damage. However, not many studies have been conducted on the corrosion identification on pipes. The objective of this paper is to identify corrosion on pipes from vibration measurements. A hollow pipe, 500 mm in length with 63.5 mm in diameter was subjected to impact loading using an impact hammer to identify the natural frequency of the tube in two conditions i) without any corrosion and ii) with an induced localized 40 mm by 40 mm corrosion at the middle of the pipe. The shift of natural frequencies of the structures under free boundary conditions was examined for each node of excitation. The results showed that there is a shift in natural frequency of the pipe, between 3 and 4 Hz near to the corrosion area. It can suggested that that the impact vibration is capable of identifying of localized corrosion on a hollow tube.



2019 ◽  
Vol 26 (4) ◽  
pp. 39-46 ◽  
Author(s):  
Ozgur Ozguc

Abstract Offshore structures are exposed to the risk of damage caused by various types of extreme and accidental events, such as fire, explosion, collision, and dropped objects. These events cause structural damage in the impact area, including yielding of materials, local buckling, and in some cases local failure and penetration. The structural response of an FPSO hull subjected to events involving dropped objects is investigated in this study, and non-linear finite element analyses are carried out using an explicit dynamic code written LS-DYNA software. The scenarios involving dropped objects are based on the impact from the fall of a container and rigid mechanical equipment. Impact analyses of the dropped objects demonstrated that even though some structural members were permanently deformed by drop loads, no failure took place in accordance with the plastic strain criteria, as per NORSOK standards. The findings and insights derived from the present study may be informative in the safe design of floating offshore structures.



2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Ozgur Ozguc

The protection structures for the Floating Production Storage and Offloading (FPSO) caissons should be sufficiently strong to avoid contact with the caisson pipes even when the protection structure is damaged by the impact of the accompanying vessels. Collision events of protectors of appurtenances such as risers, mooring lines, and seawater lift caissons with supply vessel may cause structural damage to protection structures and even to the appurtenance structures and hull structures. This study introduces the collision impact analyses on three protective structures of FPSO against striking supply vessel whose displacement is 7,500 tons. The capacity of protection structures in view of strain energy has been assessed with simple beam FE models. The striking vessel has been modelled as a small rigid body, and impact simulation has been performed including material and geometric nonlinearities where ABAQUS Explicit tool, which is a commercial explicit code, has been used for non-linear collision analyses with protection structures. The results from the current work will be a guide to understanding the impact response of offshore structures and evaluation approaches, and will provide useful indications for the FPSO hull caisson protection design and operation. In addition, the findings obtained by the current study will be informative in the safe design of FPSO facilities.



2020 ◽  
Vol 15 (1) ◽  
pp. 37-44
Author(s):  
El Mehdi Echebba ◽  
Hasnae Boubel ◽  
Oumnia Elmrabet ◽  
Mohamed Rougui

Abstract In this paper, an evaluation was tried for the impact of structural design on structural response. Several situations are foreseen as the possibilities of changing the distribution of the structural elements (sails, columns, etc.), the width of the structure and the number of floors indicates the adapted type of bracing for a given structure by referring only to its Geometric dimensions. This was done by studying the effect of the technical design of the building on the natural frequency of the structure with the study of the influence of the distribution of the structural elements on the seismic response of the building, taking into account of the requirements of the Moroccan earthquake regulations 2000/2011 and using the ANSYS APDL and Robot Structural Analysis software.



2021 ◽  
pp. 096739112110233
Author(s):  
Mohammad Hassan Shojaeefard ◽  
Abolfazl Khalkhali ◽  
Sharif Khakshournia

It has been demonstrated that adding a few percent of nanoscale reinforcements, leads to remarkable improvement in mechanical properties of the polymers such as stiffness, damping, and energy absorption. These lightweight materials are attractive substitutes for the heavy metallic structural parts in the automotive, military, aerospace and many other industries. However, due to complexity of these multiphase materials, accurate modeling of their behavior in real loading cases is still ambiguous. The impact simulation is a vital step in design procedure of a vehicle, where a strain rate-dependent model of its components is required. In this paper, an elasto-viscoplastic modeling procedure of the polymer-based nanocomposites, assuming the elastic behavior of the nano-phase is presented; whereas the polymeric matrix deformation is dependent to the loading rate and is characterized by the method of Genetic algorithm optimization-based fitting to the experimental observations. By introducing a modified Halpin-Tsai method, the nanocomposite is then modeled as a homogenized material where the modification algorithm is the main challenge. A combination of approaches including parametric analysis, central composite design of experiments and response surface method is proposed to modify the tangent modulus of the polymeric matrix to be passed as the input to the Halpin-Tsai equations. Finally, the procedure is implemented to a set of epoxy-GNP nanocomposites under unidirectional compressive loads with different rates and the stress-strain curves are predicted with a decent precision.



2021 ◽  
Vol 9 (6) ◽  
pp. 598
Author(s):  
Antoine Marty ◽  
Franck Schoefs ◽  
Thomas Soulard ◽  
Christian Berhault ◽  
Jean-Valery Facq ◽  
...  

After a few weeks, underwater components of offshore structures are colonized by marine species and after few years this marine growth can be significant. It has been shown that it affects the hydrodynamic loading of cylinder components such as legs and braces for jackets, risers and mooring lines for floating units. Over a decade, the development of Floating Offshore Wind Turbines highlighted specific effects due to the smaller size of their components. The effect of the roughness of hard marine growth on cylinders with smaller diameter increased and the shape should be representative of a real pattern. This paper first describes the two realistic shapes of a mature colonization by mussels and then presents the tests of these roughnesses in a hydrodynamic tank where three conditions are analyzed: current, wave and current with wave. Results are compared to the literature with a similar roughness and other shapes. The results highlight the fact that, for these realistic roughnesses, the behavior of the rough cylinders is mainly governed by the flow and not by their motions.



Author(s):  
Hua-Nv Feng ◽  
Bao-Lin Zhang ◽  
Yan-Dong Zhao ◽  
Hui Ma ◽  
Hao Su ◽  
...  

Marine structures are inevitably influenced by parametric perturbations as well as multiple external loadings. Among these loadings, earthquake is generally more destructive and unpredictable than others. It is significant to develop effective active control schemes to guarantee the safety, stability, and integrity of marine structures subject to earthquakes and parametric perturbations. In this paper, the problem of networked [Formula: see text] robust damping control is addressed to stabilize a marine structure subject to earthquakes. First, in consideration of perturbations of the structure parameters, an uncertain model of the networked marine structure under earthquakes is presented. Second, a robust networked [Formula: see text] control scheme is presented to suppress seismic responses of the structure. By using stability theory of time-delay systems, several sufficient conditions on robust stability of the networked marine structure system are obtained, and the linear matrix inequality methods are utilized to solve the gain matrix of the controller. Finally, simulation indicates that compared with the traditional robust [Formula: see text] control and the proposed networked [Formula: see text] control, the seismic responses amplitudes of the marine structure under the two controllers are almost the same, while the latter is more economic than the former.



2013 ◽  
Vol 569-570 ◽  
pp. 1132-1139 ◽  
Author(s):  
Thomas Siebel ◽  
Mihail Lilov

The sensitivity of the electromechanical impedance to structural damage under varying temperature is investigated in this paper. An approach based on maximizing cross-correlation coefficients is used to compensate temperature effects. The experiments are carried out on an air plane conform carbon fiber reinforced plastic (CFRP) panel (500mm x 500mm x 5mm) instrumented with 26 piezoelectric transducers of two different sizes. In a first step, the panel is stepwise subjected to temperatures between-50 °C and 100 °C. The influence of varying temperatures on the measured impedances and the capability of the temperature compensation approach are analyzed. Next, the sensitivity to a 200 J impact damage is analyzed and it is set in relation to the influence of a temperature change. It becomes apparent the impact of the transducer size and location on the quality of the damage detection. The results further indicate a significant influence of temperature on the measured spectra. However, applying the temperature compensation algorithm can reduce the temperature effect at the same time increasing the transducer sensitivity within its measuring area. The paper concludes with a discussion about the trade-off between the sensing area, where damage should be detected, and the temperature range, in which damage within this area can reliably be detected.



2012 ◽  
Vol 490-495 ◽  
pp. 499-503
Author(s):  
Ping Li ◽  
Yun Bo Shi ◽  
Jun Liu ◽  
Shi Qiao Gao

This paper presents a novel MEMS high g acceleration sensor based on piezoresistive effect. For the designed sensor structure, the formula of stress, natural frequency and damping was derived in theory, and the resonant frequency can up to 500kHz. After the structure parameters were designed, the sensor was fabricated by the standard processing technology, and the sensitivity was tested by Hopkinson bar. According to the experimental results, the sensitivity of the high g acceleration sensor is 0.125μV/g at the impact load of 164,002g.



2021 ◽  
Author(s):  
Daniel de Oliveira Costa ◽  
Julia Araújo Perim ◽  
Bruno Guedes Camargo ◽  
Joel Sena Sales Junior ◽  
Antonio Carlos Fernandes ◽  
...  

Abstract Slamming events due to wave impact on the underside of decks might lead to severe and potentially harmful local and/or global loads in offshore structures. The strong nonlinearities during the impact require a robust method for accessing the loads and hinder the use of analytical models. The use of computation fluid dynamics (CFD) is an interesting alternative to estimate the impact loads, but validation through experimental data is still essential. The present work focuses on a flat-bottomed model fixed over the mean free surface level submitted to regular incoming waves. The proposal is to reproduce previous studies through CFD and model tests in a different reduced scale to provide extra validation and to identify possible non-potential scale effects such as air compressibility. Numerical simulations are performed in both experiments’ scales. The numerical analysis is performed with a marine dedicated flow solver, FINE™/Marine from NUMECA, which features an unsteady Reynolds-averaged Navier-Stokes (URANS) solver and a finite volume method to build spatial discretization. The multiphase flow is represented through the Volume of Fluid (VOF) method for incompressible and nonmiscible fluids. The new model tests were performed at the wave channel of the Laboratory of Waves and Currents (LOC/COPPE – UFRJ), at the Federal University of Rio de Janeiro.



Sign in / Sign up

Export Citation Format

Share Document