scholarly journals Research on the Application of Cold Energy of Largescale Lng-Powered Container Ships to Refrigerated Containers

2021 ◽  
Vol 28 (4) ◽  
pp. 107-121
Author(s):  
Yajing Li ◽  
Boyang Li ◽  
Fang Deng ◽  
Qianqian Yang ◽  
Baoshou Zhang

Abstract With the aim of considering the problem of excess fuel cold energy and excessive power consumption of refrigerated containers on large LNG-powered container ships, a new utilisation method using LNG-fuelled cold energy to cool refrigerated containers in cargo holds is proposed in this study, and the main structure of the cold storage in the method is modelled in three dimensions. Then, combined with the different conditions, 15 different combination schemes of high temperature cold storage and low temperature cold storage are designed to utilise the cold energy of LNG fuel, the exergy efficiency and cold energy utilisation rate calculation model of the system is established. The simulation tool ‘Aspen HYSYS’ is used to simulate and calculate the exergy efficiency and cold energy utilisation rate of the system under 15 combinations, verifying the feasibility of the scheme. According to the characteristics of such a ship’s cross-seasonal navigation routes and the number of refrigerated containers loaded in different ports, the combination schemes of the number of low-temperature cold storage and high-temperature cold storage are selected. Thus, the average exergy efficiency and cold energy utilisation rate of the whole line is obtained, which proves that LNG-powered container ships could effectively utilise the cold energy of LNG. By calculating the total electric energy consumed by refrigerated containers on the whole sailing route, before and after the adoption of the LNG cold energy method, it is found that the adoption of this new method can promote the realisation of energy saving and emission reduction of ships.

Weed Science ◽  
1970 ◽  
Vol 18 (4) ◽  
pp. 509-514 ◽  
Author(s):  
Lafayette Thompson ◽  
F. W. Slife ◽  
H. S. Butler

Corn(Zea maysL.) in the two to three-leaf stage grown 18 to 21 days in a growth chamber under cold, wet conditions was injured by postemergence application of 2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine (atrazine) plus emulsifiable phytobland oil. Injury was most severe when these plants were kept under cold, wet conditions for 48 hr after the herbicidal spray was applied, followed by exposure to high light intensity and high temperature. Under these growth chamber conditions, approximately 50% of the atrazine-treated plants died. Since wet foliage before and after application increased foliar penetration and low temperature decreased the rate of detoxication to peptide conjugates, atrazine accumulated under cold, wet conditions. This accumulation of foliarly-absorbed atrazine and the “weakened” conditions of the plants grown under the stress conditions is believed to be responsible for the injury to corn. Hydroxylation and the dihydroxybenzoxazin-3-one content in the roots were reduced at low temperature, but it is unlikely that this contributed to the death of the corn.


2011 ◽  
Vol 493-494 ◽  
pp. 170-174
Author(s):  
Rumi Hiratai ◽  
Miho Nakamura ◽  
Akiko Nagai ◽  
Kimihiro Yamashita

We have shown that hydroxyapatite (HA), which characteristics were similar to those of bone’s inorganic components, had polarization capability and was possible to accumulate electricity under high temperature and pressure. Then, we presumed that bones had polarization capability which enabled electrical storage and conducted the experiment to measure the polarization capability of bones using rabbit’s femurs. After preparing and polarizing bone samples using KOH treatment (koh), KOH and baking treatment (koh+bake) and decalcification treatment (decalcification) as well as the bone without any treatment (untreat), quantitative amounts of stored charge in samples were determined by thermally stimulated depolarization current (TSDC) measurement of these samples. Under the condition of 400 °C for 1 h with the electric fields of 5kV/cm, samples of koh, koh+bake, and untreat showed polarization capability. In addition, under the polarization condition of 37 °C for 1 hour with the electric fields of 5kV/cm, all samples showed polarization capability. Those findings can be summarized that bones have the polarization capability which enables electrical storage and polarization of bones is possible even under the low temperature condition, which was at 37 °C in our experiment, where polarization is impossible for HA.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Xiangbing Xie ◽  
Tao Hui ◽  
Yaofei Luo ◽  
Han Li ◽  
Guanghui Li ◽  
...  

Strong ultraviolet light and low-temperature are the typical environmental characteristics in high-altitude areas. The performance of SBS-modified asphalt in the above environmental characteristics needs further study. To improve the resistance ultraviolet (UV) ageing and low-temperature performance of copolymer- (SBS-) modified asphalt, an SBS-modified asphalt containing nano-ZnO and nano-TiO2 is proposed. In this paper, nano-ZnO, nano-TiO2, and SBS were used as modifiers with the silane coupling agent (KH-560) as the nanomaterial surface modification. The orthogonal test table was used to analyse the effects of the three modifiers on the physical properties of modified asphalt at different dosages. On this basis, the physical properties, low-temperature properties, and ageing indices (carbonyl index and sulfoxide index) were studied for base asphalt, SBS-modified asphalt, nano-ZnO/SBS-modified asphalt, and nano-ZnO/nano-TiO2/SBS composite-modified asphalt before and after photoaging. The content changes of characteristic elements (Zn and Ti) in the nano-ZnO/nano-TiO2/SBS composite-modified asphalt before and after ageing were studied by scanning electron microscopy with energy dispersive spectroscopy (SEM/EDS), and the UV ageing mechanism was revealed. The results indicate that two nanoparticles show the best compatibility with asphalt after surface modification and can improve the binding ability between SBS and base asphalt. The orthogonal test analysis shows that nano-ZnO has a highly significant effect on the low- and high-temperature performance of the nano-ZnO/nano-TiO2/SBS composite-modified asphalt, and nano-TiO2 has a significant effect on the high-temperature performance. Three optimal composite-modified systems for base asphalt including 4% nano-ZnO/1.5% nano-TiO2/3.2% SBS were proposed and had the best antiaging ability. Compared with the sulfoxide index, the carbonyl index changed most obviously before and after ageing. Additionally, the results reveal that nano-TiO2 has a good absorption effect at a wavelength of 365 nm (ultraviolet light), while nano-ZnO is liable to photolysis, and its activity decreases at this wavelength.


1978 ◽  
Vol 33 (3) ◽  
pp. 268-274 ◽  
Author(s):  
V. Propach ◽  
F. Steffens

Abstract The structures of two modifications of CuZrF6 by means of neutron diffraction on powder samples in the temperature range from 298-560 K are reported. All modifications consist of octahedra, which share corners in three dimensions and which are centered alternately by Cu2+ or Zr4+. The high temperature α-modification crystallizes in space group Fm3 (No. 202) with α = 7.939 Å. There is experimental evidence, that the CuFe-octahedra are distorted by a static Jahn-Teller-effect. The space group P1̄ (No. 2) with Z = 2 is proposed for the low-temperature γ-modification.


2014 ◽  
Vol 694 ◽  
pp. 231-236 ◽  
Author(s):  
Hui Jin Xu ◽  
Xuan Luo ◽  
Qin Jian Mao ◽  
Liang Gong ◽  
Shan Bo Huang

Considerable cold energy embodied in liquefied natural gas (LNG) can be recycled in LNG regasification, which can not only save energy but also avoid cold pollution within the low-temperature fluid emission. Review on both domestic and overseas is conducted on the recycling of LNG cold energy in different applications. Against the single purpose utilization of LNG cold energy with a large amount of energy loss, the cascade recycling strategy is proposed for highly-efficient utilization of LNG cold energy. Based on the defined cold exergy efficiency, the exergy analysis is performed for some different recycling applications of LNG cold energy. The system exergy rate method is used to compare the superiority of modes in which the LNG is converted into NG under normal temperature. The results show that the exergy efficiency of a LNG cold energy cascade recycling system is higher than that of a single utilization system. Apart from the improved efficiency, the cascade recycling strategy can expand the applicable temperature range of LNG cold energy compared with the single utilization. Finally, the entropy and entransy for evaluating the LNG cold energy transport process are compared and discussed, from which it is indicated that entransy is more appropriate for the heat transfer process with low-temperature or large temperature difference, as is the case for LNG cold energy recycling.


2018 ◽  
Vol 136 ◽  
pp. 318-330 ◽  
Author(s):  
M. Šćepanović ◽  
T. Leguey ◽  
M.A. Auger ◽  
S. Lozano-Perez ◽  
D.E.J. Armstrong ◽  
...  

Author(s):  
Oreste Bellofatto ◽  
Augusto Galli ◽  
Carlo Casmirri

Several systems for cold energy saving in LNG regasification terminals through electric energy production have been studied and developed up to now based on closed cycles. This paper schematically compares the main features of a nitrogen high temperature closed cycle with those of a Rankine cycle. The actual technical possibility of achieving modular plants for 2×109 Nm3/y gasified LNG and for 61 MWh/h electric production with a 993 K max. temperature nitrogen closed cycle is examined. The Authors illustrate the efficiency trend versus temperature and report the future development of the above cycle with temperatures up to 1093 K.


1989 ◽  
Vol 26 (4) ◽  
pp. 782-790 ◽  
Author(s):  
Mario Bergeron

The behaviour of boron involved in alteration of oceanic crust by sea water was investigated by means of prompt gamma neutron activation analysis of basalt and serpentinite samples from in situ oceanic crust and ophiolites. The samples were grouped in the following categories: fresh basalts, low-temperature altered basalts, high-temperature altered basalts, and serpentinites.The average B content in fresh basalts is 2.2 ± 0.6 ppm. The low-temperature altered basalts and the serpentinites are 2–24 times richer in B than the fresh basalts. The alteration of the crust at low temperature and its serpentinization imply B extraction from sea water. The rate of B removal for this specific low-temperature alteration of basalts is estimated to be 10.5 × 1010 g/year, on the basis of the development of altered zones in the crust and of the B contents of these zones before and after their alteration.The high-temperature altered basalts having a low water/rock ratio show an average B content (2.3 ± 0.7 ppm) similar to that of fresh basalts, indicating that the alteration of the crust at high temperature has not affected the B content of those rocks under conditions of limited fluid access to the system. However, if high-temperature alteration is associated with high water/rock ratios, a solubilization of B in the hydrothermal fluids migrating through the crustal zones is to be expected. Our data and previously published results cannot provide a reliable estimate of B flows related to high-temperature alteration of the crust and to serpentinization, significantly constraining the establishment of the oceanic B budget. [Journal Translation]


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 155 ◽  
Author(s):  
Weian Wang ◽  
Xiaoya Li ◽  
Ming Gu ◽  
Yunfei Xing ◽  
Yefeng Bao

A low temperature joining process has been developed to fabricate segmented half Heusler/skutterudite thermoelectric joints, and high temperature service behavior of the joints has been studied. The microstructure and electrical resistance across the joint before and after aging were investigated. The joint is well bonded and no cracks appear at the interfaces of the joint before and after aging, which can attribute to the formation of high melting point intermetallic compounds. The electrical resistance crosses the bonding layer smoothly and the contact resistance is low. These results show the process is effective, and promising for preparation of segmented thermoelectric devices.


Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


Sign in / Sign up

Export Citation Format

Share Document