Facial Composite System Using Real Facial Features

Author(s):  
Soňa Duchovičová ◽  
Barbora Zahradníková ◽  
Peter Schreiber

Abstract Facial feature points identification plays an important role in many facial image applications, like face detection, face recognition, facial expression classification, etc. This paper describes the early stages of the research in the field of evolving a facial composite, primarily the main steps of face detection and facial features extraction. Technological issues are identified and possible strategies to solve some of the problems are proposed.

2022 ◽  
pp. 210-223
Author(s):  
Nitish Devendra Warbhe ◽  
Rutuja Rajendra Patil ◽  
Tarun Rajesh Shrivastava ◽  
Nutan V. Bansode

The COVID-19 virus can be spread through contact and contaminated surfaces; therefore, typical biometric systems like password and fingerprint are unsafe. Face recognition solutions are safer without any need of touching any device. During the COVID-19 situation as all of the people are advised to wear masks on their faces, the existing face detection technique is not able to identify the person with face occlusion. The fraudsters and thieves take advantage of this scenario and misuse the face mask, favoring them to be able to steal and commit various crimes without being identified. Face recognition methods fail to detect or recognize the face as half of the face is masked and the features are suppressed. Face recognition requires the visibility of major facial features for face normalization, orientation correction, and recognition. Thus, the chapter focuses on the facial recognition based on the feature points surrounding the eye region rather than taking the whole face as a parameter.


Author(s):  
CHING-WEN CHEN ◽  
CHUNG-LIN HUANG

This paper presents a face recognition system which can identify the unknown identity effectively using the front-view facial features. In front-view facial feature extractions, we can capture the contours of eyes and mouth by the deformable template model because of their analytically describable shapes. However, the shapes of eyebrows, nostrils and face are difficult to model using a deformable template. We extract them by using the active contour model (snake). After the contours of all facial features have been captured, we calculate effective feature values from these extracted contours and construct databases for unknown identities classification. In the database generation phase, 12 models are photographed, and feature vectors are calculated for each portrait. In the identification phase if any one of these 12 persons has his picture taken again, the system can recognize his identity.


Author(s):  
CHIN-CHEN CHANG ◽  
YUAN-HUI YU

This paper proposes an efficient approach for human face detection and exact facial features location in a head-and-shoulder image. This method searches for the eye pair candidate as a base line by using the characteristic of the high intensity contrast between the iris and the sclera. To discover other facial features, the algorithm uses geometric knowledge of the human face based on the obtained eye pair candidate. The human face is finally verified with these unclosed facial features. Due to the merits of applying the Prune-and-Search and simple filtering techniques, we have shown that the proposed method indeed achieves very promising performance of face detection and facial feature location.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 213
Author(s):  
Sheela Rani ◽  
Vuyyuru Tejaswi ◽  
Bonthu Rohitha ◽  
Bhimavarapu Akhil

Recognition of face has been turned out to be the most important and interesting area in research. A face recognition framework is a PC application that is apt for recognizing or confirming the presence of human face from a computerized picture, from the video frames etc. One of the approaches to do this is by matching the chosen facial features with the pictures in the database. It is normally utilized as a part of security frameworks and can be implemented in different biometrics, for example, unique finger impression or eye iris acknowledgment frameworks. A picture is a mix of edges. The curved line potions where the brightness of the image change intensely are known as edges. We utilize a similar idea in the field of face-detection, the force of facial colours are utilized as a consistent value. Face recognition includes examination of a picture with a database of stored faces keeping in mind the end goal to recognize the individual in the given input picture. The entire procedure covers in three phases face detection, feature extraction and recognition and different strategies are required according to the specified requirements.


Author(s):  
Pawel T. Puslecki

The aim of this chapter is the overall and comprehensive description of the machine face processing issue and presentation of its usefulness in security and forensic applications. The chapter overviews the methods of face processing as the field deriving from various disciplines. After a brief introduction to the field, the conclusions concerning human processing of faces that have been drawn by the psychology researchers and neuroscientists are described. Then the most important tasks related to the computer facial processing are shown: face detection, face recognition and processing of facial features, and the main strategies as well as the methods applied in the related fields are presented. Finally, the applications of digital biometrical processing of human faces are presented.


2011 ◽  
Vol 121-126 ◽  
pp. 617-621 ◽  
Author(s):  
Chang Yi Kao ◽  
Chin Shyurng Fahn

During the development of the facial expression classification procedure, we evaluate three machine learning methods. We combine ABAs with CARTs, which selects weak classifiers and integrates them into a strong classifier automatically. We have presented a highly automatic facial expression recognition system in which a face detection procedure is first able to detect and locate human faces in image sequences acquired in real environments. We need not label or choose characteristic blocks in advance. In the face detection procedure, some geometrical properties are applied to eliminate the skin color regions that do not belong to human faces. In the facial feature extraction procedure, we only perform both the binarization and edge detection operations on the proper ranges of eyes, mouth, and eyebrows to obtain the 16 landmarks of a human face to further produce 16 characteristic distances which represent a kind of expressions. We realize a facial expression classification procedure by employing an ABA to recognize six kinds of expressions. The performance of the system is very satisfactory; whose recognition rate achieves more than 90%.


Author(s):  
Boonchana Purahong ◽  
Vanvisa Chutchavong ◽  
Hisayuki Aoyama ◽  
Chuchart Pintavirooj

This paper presents the hybrid facial feature with identification and verification based on facial images. A query facial image had been taken under different conditions of the facial image of the same person (as the query). The query facial image database was constructed. We have used the technique of three-dimensional (3D) Dlib facial landmarks using a direct linear transform technique. A set of absolute affine invariance had been constructed from a series of the 3D landmark quadruplets, which make the facial identification robust to affine geometric transformation. These 3D facial features serve as a coarse feature depending on each individual facial structure. The construct of the 2D detail features represents the edge facial image confined between the 2D Dlib landmarks. The similarity of the 2D feature is achieved by aligning the 2D query edge image against that of the reference edge image. The geometric transformation matrix is estimated from the 2D Dlib landmarks, where correspondence is well established. An identification/verification cost function using a combination of local 2D facial features and global 3D facial features is utilized to verify and identify a query facial image against a candidate facial image(s). The performance of the algorithm yielding an area of 99.97% perfect classification is represented as a value under the receiver operating characteristic (ROC) curve.  


2019 ◽  
Vol 8 (4) ◽  
pp. 6670-6674

Face Recognition is the most important part to identifying people in biometric system. It is the most usable biometric system. This paper focuses on human face recognition by calculating the facial features present in the image and recognizing the person using features. In every face recognition system follows the preprocessing, face detection techniques. In this paper mainly focused on Face detection and gender classification. They are performed in two stages, the first stage is face detection using an enhanced viola jones algorithm and the next stage is gender classification. Input to the video or surveillance that video converted into frames. Select few best frames from the video for detecting the face, before the particular image preprocessed using PSNR. After preprocessing face detection performed, and gender classification comparative analysis done by using a neural network classifier and LBP based classifier


Author(s):  
C.J. Prabhakar

The major contribution of the research work presented in this chapter is the development of effective face recognition algorithm using analysis of face space in the interval-valued subspace. The analysis of face images is used for various purposes such as facial expression classification, gender determination, age estimation, emotion assessment, face recognition, et cetera. The research community of face image analysis has developed many techniques for face recognition; one of the successful techniques is based on subspace analysis. In the first part of the chapter, the authors present discussion of earliest face recognition techniques, which are considered as mile stones in the roadmap of subspace based face recognition techniques. The second part presents one of the efficient interval-valued subspace techniques, namely, symbolic Kernel Fisher Discriminant analysis (Symbolic KFD), in which the interval type features are extracted in contrast to classical subspace based techniques where single valued features are used for face representation and recognition.


Sign in / Sign up

Export Citation Format

Share Document