scholarly journals Energy Efficiency – Indoor Air Quality Dilemma in Educational Buildings: A Possible Solution

2020 ◽  
Vol 24 (1) ◽  
pp. 357-367
Author(s):  
Liva Asere ◽  
Andra Blumberga

AbstractThe energy efficiency – indoor air quality dilemma is well known and the main drawback to operate the mechanical ventilation is electricity costs as concluded from previous studies. Educational buildings are one of the places where future taxpayers spend a lot of time. This paper aims to study an alternative solution on how to reduce energy efficiency – indoor air quality dilemma in educational buildings by adopting systems that use renewable energy sources. A typical education building in Latvia is taken as a case study by changing it from a consumer to prosumer. This building type has a specific electricity usage profile that makes the choice of photovoltaics (PV) power quite challenging so the various power options have been analysed and used for an electricity solution. Also, the more decentralised preference is chosen – disconnect from a public heating provider and using a local system with a pellet boiler. Educational buildings using PV can reduce the electricity tariff, but the payback periods are still not very satisfactory without subsidies. The average electricity tariff per month varies between scenarios and the best one is for the scenario with 30 kW installed power. The educational building partly using 16 kW PV system reduces not only its bill for electricity but also reduces CO2 emissions by around 36 tons. The education buildings as energy prosumers using renewable energy sources are reducing GHG emissions by having high indoor air quality.

2020 ◽  
Author(s):  
◽  
Līva Asere

The largest energy consumer in Europe is the building sector, which uses about 40 % of total energy consumption and generates around 36 % of total CO2 emissions in the EU [1], [2]. Rising trends in energy consumption can be observed globally due to the demand of citizens for increased comfort, wider use of electrical equipment as well as other reasons. As energy consumption increases, climate change is promoted. In a number of areas energy could be used more efficiently, minimizing its consumption and, thus, resulting in a reduction of greenhouse gas emissions. To achieve carbon neutrality in 2050 in Europe Union, ambitious targets have been set, such as improving energy efficiency by 41 %, using 100 % of renewable energy sources and reducing greenhouse gas emissions of 80 % to 100 % [1], [3], [4]. Energy efficient buildings help to reduce heat consumption. State and local authorities need to set an example by improving the energy efficiency of their own buildings in order to encourage changes in other buildings as well. Moreover, the introduction of energy efficiency measures in buildings owned by the public sector contributes to the objectives of national climate policy. However, increasing energy efficiency has resulted in buildings becoming more airtight and natural ventilation systems need to be replaced by mechanical ventilation. However, this, in turn, leads to additional energy consumption costs. To avoid cost increases, building managers do not operate or operate unsatisfactory ventilation systems creating unfavourable indoor air quality. This creates a dilemma of energy efficiency and indoor air quality, which reduces performance of building occupants. This dilemma reduces pupils’ performance in educational buildings, reducing their chances of obtaining a good education and in the future working with higher added value which in turn reduces the country’s gross domestic product. The objective of the Thesis is to perform an assessment on energy efficiency – indoor air quality dilemma in educational buildings, its impact analyses on national prosperity, and to propose a solution to the prevention of the dilemma. The Thesis is based on six thematic joint scientific publications. The thesis consists of an introduction and three chapters. Four hypotheses have been formulated in the work that are further studied by various research methods, including system dynamic modelling, measurements in real sites and cost-benefit analysis. The thesis begins with an introduction continuing with a literature review of the topics. Chapter 2 presents the study methods. Chapter 3 examines the results obtained during the study and at the end of the Thesis, the findings are summarised according to the hypotheses.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 791
Author(s):  
Gaetano Settimo ◽  
Pasquale Avino

Recently, there has been a great increase in the importance of issues related to energy efficiency [...]


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2151
Author(s):  
Feras Alasali ◽  
Husam Foudeh ◽  
Esraa Mousa Ali ◽  
Khaled Nusair ◽  
William Holderbaum

More and more households are using renewable energy sources, and this will continue as the world moves towards a clean energy future and new patterns in demands for electricity. This creates significant novel challenges for Distribution Network Operators (DNOs) such as volatile net demand behavior and predicting Low Voltage (LV) demand. There is a lack of understanding of modern LV networks’ demand and renewable energy sources behavior. This article starts with an investigation into the unique characteristics of householder demand behavior in Jordan, connected to Photovoltaics (PV) systems. Previous studies have focused mostly on forecasting LV level demand without considering renewable energy sources, disaggregation demand and the weather conditions at the LV level. In this study, we provide detailed LV demand analysis and a variety of forecasting methods in terms of a probabilistic, new optimization learning algorithm called the Golden Ratio Optimization Method (GROM) for an Artificial Neural Network (ANN) model for rolling and point forecasting. Short-term forecasting models have been designed and developed to generate future scenarios for different disaggregation demand levels from households, small cities, net demands and PV system output. The results show that the volatile behavior of LV networks connected to the PV system creates substantial forecasting challenges. The mean absolute percentage error (MAPE) for the ANN-GROM model improved by 41.2% for household demand forecast compared to the traditional ANN model.


2021 ◽  
Vol 19 ◽  
pp. 205-210
Author(s):  
Milan Belik ◽  

This project focuses on optimisation of energy accumulation for various types of distributed renewable energy sources. The main goal is to prepare charging – discharging strategy depending on actual power consumption and prediction of consumption and production of utilised renewable energy sources for future period. The simulation is based on real long term data measured on photovoltaic system, wind power station and meteo station between 2004 – 2021. The data from meteo station serve as the input for the simulation and prediction of the future production while the data from PV system and wind turbine are used either as actual production or as a verification of the predicted values. Various parameters are used for trimming of the optimisation process. Influence of the charging strategy, discharging strategy, values and shape of the demand from the grid and prices is described on typical examples of the simulations. The main goal is to prepare and verify the system in real conditions with real load chart and real consumption defined by the model building with integrated renewable energy sources. The system can be later used in general installations on commercial or residential buildings.


10.23856/2705 ◽  
2018 ◽  
Vol 27 (2) ◽  
pp. 44-51
Author(s):  
Lidiya Shergina ◽  
Alla Zhemba ◽  
Nataliia Revutska ◽  
Yulia Burma

The article is devoted to the issues of the functioning and development of energy in each country, caused mainly by the economic expediency of renewable energy and the requirements of energy independence. Also, the article examines the importance of replacing traditional fuels with alternative energy sources. The international experience of the countries in the field of efficient use of available natural resources of the fuel and energy complex and enhancement of the potential of the energy sector have been analyzed. A number of common characteristics and directions of energy efficiency improvement for European countries are highlighted. Alternative types of energy and measures necessary for their implementation have been offered. The potential resources of renewable energy sources have been analyzed. The article is devoted to the use of economical and ecological type of fuel - biofuel for Ukraine. On the basis of the analysis of the situation on the energy market, renewable energy is examine, which plays a compensatory role in global energy consumption in the conditions of growing exhaustion of non-renewable sources.


2021 ◽  
Vol 18 (1) ◽  
pp. 95-114
Author(s):  
Ana Radojevic ◽  
Danijela Nikolic ◽  
Jasna Radulovic ◽  
Jasmina Skerlic

The implementation of energy efficiency measures and use of renewable energy sources in educational buildings can significantly contribute to reducing energy consumption, but also to CO2 emissions in the entire public sector. The paper shows the comparison of energy consumption indicators for 61 elementary school buildings which have previously been divided in 12 groups, according to the period of construction and size, based on the national typology called TABULA, as the first step of further study on how to use the renewable energy sources. The aim of this paper is to use the energy benchmarking process to select representative facilities which are suitable for applying renewable energy sources, for their further energy efficiency improvement. Indicators of annual specific electricity consumption and CO2 emissions per unit area [kWh/m2] and per user [kWh/user] were calculated. After that, from two groups (in which the highest electricity consumption and CO2 emissions are 68.37% and 74.53% of the total consumption/ emissions), one representative facility was selected.


Sign in / Sign up

Export Citation Format

Share Document