scholarly journals Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D

Open Physics ◽  
2013 ◽  
Vol 11 (6) ◽  
Author(s):  
Qiang Yu ◽  
Fawang Liu ◽  
Ian Turner ◽  
Kevin Burrage

AbstractRecently, the fractional Bloch-Torrey model has been used to study anomalous diffusion in the human brain. In this paper, we consider three types of space and time fractional Bloch-Torrey equations in two dimensions: Model-1 with the Riesz fractional derivative; Model-2 with the one-dimensional fractional Laplacian operator; and Model-3 with the two-dimensional fractional Laplacian operator.Firstly, we propose a spatially second-order accurate implicit numerical method for Model-1 whereby we discretize the Riesz fractional derivative using a fractional centered difference. We consider a finite domain where the time and space derivatives are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Secondly, we utilize the matrix transfer technique for solving Model-2 and Model-3. Finally, some numerical results are given to show the behaviours of these three models especially on varying domain sizes with zero Dirichlet boundary conditions.

Mathematics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 320 ◽  
Author(s):  
Chenkuan Li ◽  
Changpin Li ◽  
Thomas Humphries ◽  
Hunter Plowman

The fractional Laplacian, also known as the Riesz fractional derivative operator, describes an unusual diffusion process due to random displacements executed by jumpers that are able to walk to neighbouring or nearby sites, as well as perform excursions to remote sites by way of Lévy flights. The fractional Laplacian has many applications in the boundary behaviours of solutions to differential equations. The goal of this paper is to investigate the half-order Laplacian operator ( − Δ ) 1 2 in the distributional sense, based on the generalized convolution and Temple’s delta sequence. Several interesting examples related to the fractional Laplacian operator of order 1 / 2 are presented with applications to differential equations, some of which cannot be obtained in the classical sense by the standard definition of the fractional Laplacian via Fourier transform.


2016 ◽  
Vol 5 (1) ◽  
pp. 57-74 ◽  
Author(s):  
Jacques Giacomoni ◽  
Pawan Kumar Mishra ◽  
K. Sreenadh

AbstractWe study the existence of positive solutions for fractional elliptic equations of the type (-Δ)1/2u = h(u), u > 0 in (-1,1), u = 0 in ℝ∖(-1,1) where h is a real valued function that behaves like eu2 as u → ∞ . Here (-Δ)1/2 is the fractional Laplacian operator. We show the existence of mountain-pass solution when the nonlinearity is superlinear near t = 0. In case h is concave near t = 0, we show the existence of multiple solutions for suitable range of λ by analyzing the fibering maps and the corresponding Nehari manifold.


2016 ◽  
Vol 5 (1) ◽  
Author(s):  
Luiz F. O. Faria ◽  
Olimpio H. Miyagaki ◽  
Fabio R. Pereira ◽  
Marco Squassina ◽  
Chengxiang Zhang

AbstractBy means of variational methods we investigate existence, nonexistence as well as regularity of weak solutions for a system of nonlocal equations involving the fractional laplacian operator and with nonlinearity reaching the critical growth and interacting, in a suitable sense, with the spectrum of the operator.


2018 ◽  
Vol 28 (06) ◽  
pp. 1199-1231
Author(s):  
Gerardo Huaroto ◽  
Wladimir Neves

In this paper, we study a fractional type degenerate heat equation posed in bounded domains. We show the existence of solutions for measurable and bounded non-negative initial data, and homogeneous Dirichlet boundary condition. The nonlocal diffusion effect relies on an inverse of the [Formula: see text]-fractional Laplacian operator, and the solvability is proved for any [Formula: see text].


Author(s):  
Kolade M. Owolabi

Abstract Numerical solution of nonlinear chaotic fractional in space reaction–diffusion system is considered in this paper on a large but finite spatial domain size x ∈ [0, L] for L ≫ 0, x = x(x, y) and t ∈ [0, T]. The classical order chaotic ordinary differential equation is formulated by introducing the second-order spatial fractional derivative with order β ∈ (1, 2]. This second order spatial derivative is modelled by using the definition of the Riesz fractional derivative. The method of approximation combines the Fourier spectral method with the novel exponential time difference schemes. The proposed technique is known to have gained spectral accuracy over finite difference schemes. Applicability and suitability of the suggested methods are tested on Rössler chaotic system of recurring interests in one and two dimensions.


2012 ◽  
Vol 252 (11) ◽  
pp. 6133-6162 ◽  
Author(s):  
B. Barrios ◽  
E. Colorado ◽  
A. de Pablo ◽  
U. Sánchez

2018 ◽  
Vol 18 (1) ◽  
pp. 147-164 ◽  
Author(s):  
Yun Zhu ◽  
Zhi-Zhong Sun

AbstractIn this paper, a high-order difference scheme is proposed for an one-dimensional space and time fractional Bloch–Torrey equation. A third-order accurate formula, based on the weighted and shifted Grünwald–Letnikov difference operators, is used to approximate the Caputo fractional derivative in temporal direction. For the discretization of the spatial Riesz fractional derivative, we approximate the weighed values of the Riesz fractional derivative at three points by the fractional central difference operator. The unique solvability, unconditional stability and convergence of the scheme are rigorously proved by the discrete energy method. The convergence order is 3 in time and 4 in space in {L_{1}(L_{2})}-norm. Two numerical examples are implemented to testify the accuracy of the numerical solution and the efficiency of the difference scheme.


2018 ◽  
Vol 18 (2) ◽  
pp. 393-407 ◽  
Author(s):  
Wael Abdelhedi ◽  
Hichem Chtioui ◽  
Hichem Hajaiej

AbstractWe study the following fractional Yamabe-type equation:\left\{\begin{aligned} \displaystyle A_{s}u&\displaystyle=u^{\frac{n+2s}{n-2s}% },\\ \displaystyle u&\displaystyle>0&&\displaystyle\text{in }\Omega,\\ \displaystyle u&\displaystyle=0&&\displaystyle\text{on }\partial\Omega,\end{% aligned}\right.Here Ω is a regular bounded domain of{\mathbb{R}^{n}},{n\geq 2}, and{A_{s}},{s\in(0,1)}, represents the fractional Laplacian operator{(-\Delta)^{s}}in Ω with zero Dirichlet boundary condition. We investigate the effect of the topology of Ω on the existence of solutions. Our result can be seen as the fractional counterpart of the Bahri–Coron theorem [3].


Sign in / Sign up

Export Citation Format

Share Document