Numerical solutions and analysis of diffusion for new generalized fractional advection-diffusion equations

Open Physics ◽  
2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Yufeng Xu ◽  
Om Agrawal

AbstractIn this paper we study a class of new Generalized Fractional Advection-Diffusion Equations (GFADEs) with a new Generalized Fractional Derivative (GFD) proposed last year. The new GFD is defined in the Caputo sense using a weight function and a scale function. The GFADE is discussed in a bounded domain, and numerical solutions for two examples consisting of a linear and a nonlinear GFADE are obtained using an implicit finite difference approach. The stability of the numerical scheme is investigated, and the order of convergence is estimated numerically. Numerical results illustrate that the finite difference scheme is simple and effective for solving the GFADEs. We investigate the influence of weight and scale functions on the diffusion of GFADEs. Linear and nonlinear stretching and contracting functions are considered. It is found that an increasing weight function increases the rate of diffusion, and a scale function can stretch or contract the diffusion on the time domain.

Author(s):  
Yufeng Xu ◽  
Om Agrawal

AbstractIn this paper, numerical solutions of Burgers equation defined by using a new Generalized Time-Fractional Derivative (GTFD) are discussed. The numerical scheme uses a finite difference method. The new GTFD is defined using a scale function and a weight function. Many existing fractional derivatives are the special cases of it. A linear recurrence relationship for the numerical solutions of the resulting system of linear equations is found via finite difference approach. Burgers equations with different fractional orders and coefficients are computed which show that this numerical method is simple and effective, and is capable of solving the Burgers equation accurately for a wide range of viscosity values. Furthermore, we study the influence of the scale and the weight functions on the diffusion process of Burgers equation. Numerical simulations illustrate that a scale function can stretch or contract the diffusion on the time domain, while a weight function can change the decay velocity of the diffusion process.


2009 ◽  
Vol 20 (04) ◽  
pp. 633-650 ◽  
Author(s):  
SHINSUKE SUGA

The stability of the numerical schemes for anisotropic advection-diffusion equations derived from the lattice Boltzmann equation with the D2Q4 particle velocity model is analyzed through eigenvalue analysis of the amplification matrices of the scheme. Accuracy of the schemes is investigated by solving benchmark problems, and the LBM scheme is compared with traditional implicit schemes. Numerical experiments demonstrate that the LBM scheme produces stable numerical solutions close to the analytical solutions when the values of the relaxation parameters in x and y directions are greater than 1.9 and the Courant numbers satisfy the stability condition. Furthermore, the numerical solutions produced by the LBM scheme are more accurate than those of the Crank–Nicolson finite difference scheme for the case where the Courant numbers are set to be values close to the upper bound of the stability region of the scheme.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Lijuan Su ◽  
Pei Cheng

Fractional-order diffusion equations are viewed as generalizations of classical diffusion equations, treating super-diffusive flow processes. In this paper, in order to solve the fractional advection-diffusion equation, the fractional characteristic finite difference method is presented, which is based on the method of characteristics (MOC) and fractional finite difference (FD) procedures. The stability, consistency, convergence, and error estimate of the method are obtained. An example is also given to illustrate the applicability of theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Joan Goh ◽  
Ahmad Abd. Majid ◽  
Ahmad Izani Md. Ismail

Numerical solutions of one-dimensional heat and advection-diffusion equations are obtained by collocation method based on cubicB-spline. Usual finite difference scheme is used for time and space integrations. CubicB-spline is applied as interpolation function. The stability analysis of the scheme is examined by the Von Neumann approach. The efficiency of the method is illustrated by some test problems. The numerical results are found to be in good agreement with the exact solution.


2018 ◽  
Vol 28 (11) ◽  
pp. 2620-2649 ◽  
Author(s):  
Rajni Rohila ◽  
R.C. Mittal

Purpose This paper aims to develop a novel numerical method based on bi-cubic B-spline functions and alternating direction (ADI) scheme to study numerical solutions of advection diffusion equation. The method captures important properties in the advection of fluids very efficiently. C.P.U. time has been shown to be very less as compared with other numerical schemes. Problems of great practical importance have been simulated through the proposed numerical scheme to test the efficiency and applicability of method. Design/methodology/approach A bi-cubic B-spline ADI method has been proposed to capture many complex properties in the advection of fluids. Findings Bi-cubic B-spline ADI technique to investigate numerical solutions of partial differential equations has been studied. Presented numerical procedure has been applied to important two-dimensional advection diffusion equations. Computed results are efficient and reliable, have been depicted by graphs and several contour forms and confirm the accuracy of the applied technique. Stability analysis has been performed by von Neumann method and the proposed method is shown to satisfy stability criteria unconditionally. In future, the authors aim to extend this study by applying more complex partial differential equations. Though the structure of the method seems to be little complex, the method has the advantage of using small processing time. Consequently, the method may be used to find solutions at higher time levels also. Originality/value ADI technique has never been applied with bi-cubic B-spline functions for numerical solutions of partial differential equations.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 215 ◽  
Author(s):  
Alessandra Jannelli

This paper deals with the numerical solutions of a class of fractional mathematical models arising in engineering sciences governed by time-fractional advection-diffusion-reaction (TF–ADR) equations, involving the Caputo derivative. In particular, we are interested in the models that link chemical and hydrodynamic processes. The aim of this paper is to propose a simple and robust implicit unconditionally stable finite difference method for solving the TF–ADR equations. The numerical results show that the proposed method is efficient, reliable and easy to implement from a computational viewpoint and can be employed for engineering sciences problems.


Sign in / Sign up

Export Citation Format

Share Document