STABILITY AND ACCURACY OF LATTICE BOLTZMANN SCHEMES FOR ANISOTROPIC ADVECTION-DIFFUSION EQUATIONS

2009 ◽  
Vol 20 (04) ◽  
pp. 633-650 ◽  
Author(s):  
SHINSUKE SUGA

The stability of the numerical schemes for anisotropic advection-diffusion equations derived from the lattice Boltzmann equation with the D2Q4 particle velocity model is analyzed through eigenvalue analysis of the amplification matrices of the scheme. Accuracy of the schemes is investigated by solving benchmark problems, and the LBM scheme is compared with traditional implicit schemes. Numerical experiments demonstrate that the LBM scheme produces stable numerical solutions close to the analytical solutions when the values of the relaxation parameters in x and y directions are greater than 1.9 and the Courant numbers satisfy the stability condition. Furthermore, the numerical solutions produced by the LBM scheme are more accurate than those of the Crank–Nicolson finite difference scheme for the case where the Courant numbers are set to be values close to the upper bound of the stability region of the scheme.

2006 ◽  
Vol 17 (11) ◽  
pp. 1563-1577 ◽  
Author(s):  
SHINSUKE SUGA

Stability and accuracy of the numerical schemes obtained from the lattice Boltzmann equation (LBE) used for numerical solutions of two-dimensional advection-diffusion equations are presented. Three kinds of velocity models are used to determine the moving velocity of particles on a squre lattice. A system of explicit finite difference equations are derived from the LBE based on the Bhatnagar, Gross and Krook (BGK) model for individual velocity model. In order to approximate the advecting velocity field, a linear equilibrium distribution function is used for each of the moving directions. The stability regions of the schemes in the special case of the relaxation parameter ω in the LBE being set to ω=1 are found by analytically solving the eigenvalue problems of the amplification matrices corresponding to each scheme. As for the cases of general relaxation parameters, the eigenvalue problems are solved numerically. A benchmark problem is solved in order to investigate the relationship between the accuracy of the numerical schemes and the order of the Peclet number. The numerical experiments result in indicating that for the scheme based on a 9-velocity model we can find the parameters depending on the order of the given Peclet number, which generate accurate solutions in the stability region.


Open Physics ◽  
2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Yufeng Xu ◽  
Om Agrawal

AbstractIn this paper we study a class of new Generalized Fractional Advection-Diffusion Equations (GFADEs) with a new Generalized Fractional Derivative (GFD) proposed last year. The new GFD is defined in the Caputo sense using a weight function and a scale function. The GFADE is discussed in a bounded domain, and numerical solutions for two examples consisting of a linear and a nonlinear GFADE are obtained using an implicit finite difference approach. The stability of the numerical scheme is investigated, and the order of convergence is estimated numerically. Numerical results illustrate that the finite difference scheme is simple and effective for solving the GFADEs. We investigate the influence of weight and scale functions on the diffusion of GFADEs. Linear and nonlinear stretching and contracting functions are considered. It is found that an increasing weight function increases the rate of diffusion, and a scale function can stretch or contract the diffusion on the time domain.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Joan Goh ◽  
Ahmad Abd. Majid ◽  
Ahmad Izani Md. Ismail

Numerical solutions of one-dimensional heat and advection-diffusion equations are obtained by collocation method based on cubicB-spline. Usual finite difference scheme is used for time and space integrations. CubicB-spline is applied as interpolation function. The stability analysis of the scheme is examined by the Von Neumann approach. The efficiency of the method is illustrated by some test problems. The numerical results are found to be in good agreement with the exact solution.


2018 ◽  
Vol 28 (11) ◽  
pp. 2620-2649 ◽  
Author(s):  
Rajni Rohila ◽  
R.C. Mittal

Purpose This paper aims to develop a novel numerical method based on bi-cubic B-spline functions and alternating direction (ADI) scheme to study numerical solutions of advection diffusion equation. The method captures important properties in the advection of fluids very efficiently. C.P.U. time has been shown to be very less as compared with other numerical schemes. Problems of great practical importance have been simulated through the proposed numerical scheme to test the efficiency and applicability of method. Design/methodology/approach A bi-cubic B-spline ADI method has been proposed to capture many complex properties in the advection of fluids. Findings Bi-cubic B-spline ADI technique to investigate numerical solutions of partial differential equations has been studied. Presented numerical procedure has been applied to important two-dimensional advection diffusion equations. Computed results are efficient and reliable, have been depicted by graphs and several contour forms and confirm the accuracy of the applied technique. Stability analysis has been performed by von Neumann method and the proposed method is shown to satisfy stability criteria unconditionally. In future, the authors aim to extend this study by applying more complex partial differential equations. Though the structure of the method seems to be little complex, the method has the advantage of using small processing time. Consequently, the method may be used to find solutions at higher time levels also. Originality/value ADI technique has never been applied with bi-cubic B-spline functions for numerical solutions of partial differential equations.


2016 ◽  
Vol 42 ◽  
pp. 1660152
Author(s):  
H. W. ZHENG ◽  
C. SHU

It is well known that the numerical scheme is a key factor to the stability and accuracy of a Navier-Stokes solver. Recently, a new hybrid lattice Boltzmann numerical flux (HLBFS) is developed by Shu's group. It combines two different LBFS schemes by a switch function. It solves the Boltzmann equation instead of the Euler equation. In this article, the main object is to evaluate the ability of this HLBFS scheme by our in-house cell centered hybrid mesh based Navier-Stokes code. Its performance is examined by several widely-used bench-mark test cases. The comparisons on results between calculation and experiment are conducted. They show that the scheme can capture the shock wave as well as the resolving of boundary layer.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Dongfang Li ◽  
Chao Tong ◽  
Jinming Wen

This paper is concerned with the stability of non-Fickian reaction-diffusion equations with a variable delay. It is shown that the perturbation of the energy function of the continuous problems decays exponentially, which provides a more accurate and convenient way to express the rate of decay of energy. Then, we prove that the proposed numerical methods are sufficient to preserve energy stability of the continuous problems. We end the paper with some numerical experiments on a biological model to confirm the theoretical results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mohammed Bakheet Almatrafi ◽  
Abdulghani Ragaa Alharbi ◽  
Cemil Tunç

Abstract The principal objective of the present paper is to manifest the exact traveling wave and numerical solutions of the good Boussinesq (GB) equation by employing He’s semiinverse process and moving mesh approaches. We present the achieved exact results in the form of hyperbolic trigonometric functions. We test the stability of the exact results. We discretize the GB equation using the finite-difference method. We also investigate the accuracy and stability of the used numerical scheme. We sketch some 2D and 3D surfaces for some recorded results. We theoretically and graphically report numerical comparisons with exact traveling wave solutions. We measure the $L_{2}$ L 2  error to show the accuracy of the used numerical technique. We can conclude that the novel techniques deliver improved solution stability and accuracy. They are reliable and effective in extracting some new soliton solutions for some nonlinear partial differential equations (NLPDEs).


2019 ◽  
Vol 14 (9) ◽  
pp. 15
Author(s):  
Nguyen Tien Dung ◽  
Nguyen Anh Tra

In this paper, finite difference schemes are proposed to approximate solutions of stochastic advection-diffusion equations. We used central-difference formula of third-order to approximate spatial derivatives. The stability, consistency and convergence of the scheme are analysed and established. A numerical result is also given to demonstrate the computational efficiency of the stochastic schemes.


Author(s):  
Mohammed Al-Lawatia ◽  
Robert C. Sharpley ◽  
Hong Wang

We develop a finite volume characteristic method for the solution of the advection-diffusion equations which model the contaminant transport through porous medium. This method uses a second order Runge-Kutta approximation for the characteristics within the framework of the Eulerian Lagrangian localized adjoint methods (ELLAM). The derived scheme conserves mass, symmetrizes the governing equations and generates accurate numerical solutions even if large time steps are used.  Numerical experiments comparing several competitive methods using a standard test example are presented to illustrate the performance of the method.  


Sign in / Sign up

Export Citation Format

Share Document