PRRs in pathogen recognition

2006 ◽  
Vol 1 (3) ◽  
pp. 299-313 ◽  
Author(s):  
Satoshi Uematsu ◽  
Shizuo Akira

AbstractThe innate immune system provides the first line of host defense against invading microorganisms before the development of adaptive immune responses. Innate immune responses are initiated by germline-encoded pattern recognition receptors (PRRs), which recognize specific structures of microorganisms. Toll-like receptors (TLRs) are pattern-recognition receptors that sense a wide range of microorganisms, including bacteria, fungi, protozoa and viruses. TLRs exist either on the cell surface or in the lysosome/endosome compartment and induce innate immune responses. Recently, cytoplasmic PRRs have been identified which detect pathogens that have invaded the cytosol. This review focuses on the pathogen recognition of PRRs in innate immunity.

mBio ◽  
2020 ◽  
Vol 11 (3) ◽  
Author(s):  
Michal Caspi Tal ◽  
Laughing Bear Torrez Dulgeroff ◽  
Lara Myers ◽  
Lamin B. Cham ◽  
Katrin D. Mayer-Barber ◽  
...  

ABSTRACT It is well understood that the adaptive immune response to infectious agents includes a modulating suppressive component as well as an activating component. We now show that the very early innate response also has an immunosuppressive component. Infected cells upregulate the CD47 “don’t eat me” signal, which slows the phagocytic uptake of dying and viable cells as well as downstream antigen-presenting cell (APC) functions. A CD47 mimic that acts as an essential virulence factor is encoded by all poxviruses, but CD47 expression on infected cells was found to be upregulated even by pathogens, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), that encode no mimic. CD47 upregulation was revealed to be a host response induced by the stimulation of both endosomal and cytosolic pathogen recognition receptors (PRRs). Furthermore, proinflammatory cytokines, including those found in the plasma of hepatitis C patients, upregulated CD47 on uninfected dendritic cells, thereby linking innate modulation with downstream adaptive immune responses. Indeed, results from antibody-mediated CD47 blockade experiments as well as CD47 knockout mice revealed an immunosuppressive role for CD47 during infections with lymphocytic choriomeningitis virus and Mycobacterium tuberculosis. Since CD47 blockade operates at the level of pattern recognition receptors rather than at a pathogen or antigen-specific level, these findings identify CD47 as a novel potential immunotherapeutic target for the enhancement of immune responses to a broad range of infectious agents. IMPORTANCE Immune responses to infectious agents are initiated when a pathogen or its components bind to pattern recognition receptors (PRRs). PRR binding sets off a cascade of events that activates immune responses. We now show that, in addition to activating immune responses, PRR signaling also initiates an immunosuppressive response, probably to limit inflammation. The importance of the current findings is that blockade of immunomodulatory signaling, which is mediated by the upregulation of the CD47 molecule, can lead to enhanced immune responses to any pathogen that triggers PRR signaling. Since most or all pathogens trigger PRRs, CD47 blockade could be used to speed up and strengthen both innate and adaptive immune responses when medically indicated. Such immunotherapy could be done without a requirement for knowing the HLA type of the individual, the specific antigens of the pathogen, or, in the case of bacterial infections, the antimicrobial resistance profile.


Microbiology ◽  
2006 ◽  
Vol 152 (2) ◽  
pp. 285-293 ◽  
Author(s):  
Gavin K. Paterson ◽  
Tim J. Mitchell

The innate immune system provides a non-specific first line of defence against microbes and is crucial both in the development and effector stages of subsequent adaptive immune responses. Consistent with its importance, study of the innate immune system is a broad and fast-moving field. Here we provide an overview of the recent key advances made in this area with relation to the important pathogen Streptococcus pneumoniae (the pneumococcus).


2010 ◽  
Vol 131 (2) ◽  
pp. 113-119 ◽  
Author(s):  
Whasun O. Chung ◽  
Jonathan Y. An ◽  
Lei Yin ◽  
Beth M. Hacker ◽  
Maryam G. Rohani ◽  
...  

2019 ◽  
Vol 101 (4) ◽  
pp. 733-747 ◽  
Author(s):  
Maolei Gong ◽  
Fei Wang ◽  
Weihua Liu ◽  
Ran Chen ◽  
Han Wu ◽  
...  

Abstract The seminal vesicles can be infected by microorganisms, thereby resulting in vesiculitis and impairment in male fertility. Innate immune responses in seminal vesicles cells to microbial infections, which facilitate vesiculitis, have yet to be investigated. The present study aims to elucidate pattern recognition receptor–mediated innate immune responses in seminal vesicles epithelial cells. Various pattern recognition receptors, including Toll-like receptor 3, Toll-like receptor 4, cytosolic ribonucleic acid, and deoxyribonucleic acid sensors, are abundantly expressed in seminal vesicles epithelial cells. These pattern recognition receptors can recognize their respective ligands, thus activating nuclear factor kappa B and interferon regulatory factor 3. The pattern recognition receptor signaling induces expression of pro-inflammatory cytokines, such as tumor necrosis factor alpha (Tnfa) and interleukin 6 (Il6), chemokines monocyte chemoattractant protein-1 (Mcp1) and C–X–C motif chemokine 10 (Cxcl10), and type 1 interferons Ifna and Ifnb. Moreover, pattern recognition receptor-mediated innate immune responses up-regulated the expression of microsomal prostaglandin E synthase and cyclooxygenase 2, but they down-regulated semenogelin-1 expression. These results provide novel insights into the mechanism underlying vesiculitis and its impact on the functions of the seminal vesicles.


2014 ◽  
Vol 86 (10) ◽  
pp. 1483-1538 ◽  
Author(s):  
John A. Robinson ◽  
Kerstin Moehle

Abstract The vertebrate immune system uses pattern recognition receptors (PRRs) to detect a large variety of molecular signatures (pathogen-associated molecular patterns, PAMPs) from a broad range of different invading pathogens. The PAMPs range in size from relatively small molecules, to others of intermediate size such as bacterial lipopolysaccharide, lipopeptides, and oligosaccharides, to macromolecules such as viral DNA, RNA, and pathogen-derived proteins such as flagellin. Underlying this functional diversity of PRRs is a surprisingly small number of structurally distinct protein folds that include leucine-rich repeats in Toll-like receptors (TLRs) and NOD-like receptors (NLRs), the DExH box helicase domain in RIG-like receptors (RLRs), and C-type lectin domains (CTLDs) in the C-type lectins. Following PAMP recognition by the PRRs, downstream signaling pathways activate the innate immune system to respond to invading pathogenic organisms. The resulting stimulatory response is also vital for a balanced adaptive immune response to the pathogen, mediated by circulating antibodies and/or cytotoxic T cells. However, an aberrant stimulation of the innate immune system can also lead to excessive inflammatory and toxic stress responses. Exciting opportunities are now arising for the design of small synthetic molecules that bind to PRRs and influence downstream signaling pathways. Such molecules can be useful tools to modulate immune responses, for example, as adjuvants to stimulate adaptive immune responses to a vaccine, or as therapeutic agents to dampen aberrant immune responses, such as inflammation. The design of agonists or antagonists of PRRs can now benefit from a surge in knowledge of the 3D structures of PRRs, many in complexes with their natural ligands. This review article describes recent progress in structural studies of PRRs (TLRs, NLRs, CTLs, and RLRs), which is required for an understanding of how they specifically recognize structurally diverse “foreign” PAMPs amongst a background of other “self” molecules, sometimes closely related in structure, that are present in the human body.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Young-Su Yi ◽  
Young-Jin Son ◽  
Chongsuk Ryou ◽  
Gi-Ho Sung ◽  
Jong-Hoon Kim ◽  
...  

Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases.


2013 ◽  
Vol 37 (4) ◽  
pp. 284-291 ◽  
Author(s):  
Rahul Suresh ◽  
David M. Mosser

Infection by pathogenic microbes initiates a set of complex interactions between the pathogen and the host mediated by pattern recognition receptors. Innate immune responses play direct roles in host defense during the early stages of infection, and they also exert a profound influence on the generation of the adaptive immune responses that ensue. An improved understanding of the pattern recognition receptors that mediate innate responses and their downstream effects after receptor ligation has the potential to lead to new ways to improve vaccines and prevent autoimmunity. This review focuses on the control of innate immune activation and the role that innate immune receptors play in helping to maintain tissue homeostasis.


2013 ◽  
Vol 304 (10) ◽  
pp. F1243-F1251 ◽  
Author(s):  
Takashi Hato ◽  
Tarek M. El-Achkar ◽  
Pierre C. Dagher

The importance of innate immunity for survival is underscored by its presence at almost every level of the evolutionary tree of life. The task of “danger” recognition by the innate immune system is carried out by a broad class of pattern recognition receptors. These receptors are expressed in both hematopoietic and nonhematopoietic cells such as renal epithelial cells. Upon activation, pattern recognition receptors induce essentially two types of defensive responses: inflammation and phagocytosis. In this review, we highlight evidence that renal epithelial cells are endowed with such defensive capabilities and as such fully participate in renal innate immune responses.


Sign in / Sign up

Export Citation Format

Share Document