scholarly journals Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Young-Su Yi ◽  
Young-Jin Son ◽  
Chongsuk Ryou ◽  
Gi-Ho Sung ◽  
Jong-Hoon Kim ◽  
...  

Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk) was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases.

2006 ◽  
Vol 1 (3) ◽  
pp. 299-313 ◽  
Author(s):  
Satoshi Uematsu ◽  
Shizuo Akira

AbstractThe innate immune system provides the first line of host defense against invading microorganisms before the development of adaptive immune responses. Innate immune responses are initiated by germline-encoded pattern recognition receptors (PRRs), which recognize specific structures of microorganisms. Toll-like receptors (TLRs) are pattern-recognition receptors that sense a wide range of microorganisms, including bacteria, fungi, protozoa and viruses. TLRs exist either on the cell surface or in the lysosome/endosome compartment and induce innate immune responses. Recently, cytoplasmic PRRs have been identified which detect pathogens that have invaded the cytosol. This review focuses on the pathogen recognition of PRRs in innate immunity.


2011 ◽  
Vol 122 (5) ◽  
pp. 203-214 ◽  
Author(s):  
Mohan R. Dasu ◽  
Sandra Ramirez ◽  
Roslyn R. Isseroff

Diabetes is a mutifactorial metabolic disorder that leads to a number of complications. Diabetes is estimated to affect 36 million people in the U.S.A., and the prevalence of diagnosed and undiagnosed diabetes is at 9.3% and continues to rise. Evidence from experimental animal models as well as humans has indicated that systemic inflammation plays a role in the pathophysiological processes of diabetes and is facilitated by innate immune responses. TLRs (Toll-like receptors) are key innate immune receptors that recognize conserved PAMPs (pathogen-associated molecular patterns), induce inflammatory responses essential for host defences and initiate an adaptive immune response. Although TLR expression is increased in a plethora of inflammatory disorders, the effects of metabolic aberrations on TLRs and their role in diabetes and its complications is still emerging. In the present paper, we provide a systematic review on how TLRs play a detrimental role in the pathogenic processes [increased blood sugar, NEFAs (non-esterified ‘free’ fatty acids), cytokines and ROS (reactive oxygen species)] that manifest diabetes. Furthermore, we will highlight some of the therapeutic strategies targeted at decreasing TLRs to abrogate inflammation in diabetes that may eventually result in decreased complications.


2021 ◽  
Author(s):  
David Schneberger ◽  
Upkardeep Singh Pandher ◽  
Brooke Thompson ◽  
Shelley Kirychuk

Abstract Workplaces with elevated organic dust levels such as animal feed barns also commonly have elevated levels of gasses, such as CO2. Workers exposed to such complex environments often experience respiratory effects that may be due to a combination of respirable factors. We examined the effects of CO2 at the ASHRAE recommended limit (1000 ppm) as well as the EPA 8hr time weighted average limit (5000 ppm) on lung innate immune responses in mice with exposure to inflammatory lipopolysaccharide and organic dust. Mice were nasally instilled with dust extracts or LPS and immediately put into chambers with a constant flow of room air (approx. 430 ppm CO2), 1000 ppm, or 5000 ppm CO2 enriched air. Organic dust exposures tended to show decreased inflammatory responses with 1000 ppm CO2 and increased responses at 5000 ppm CO2. Conversely, LPS with addition of CO2 as low as 1000 ppm tended to inhibit several inflammatory markers. In most cases saline treated animals showed few changes with CO2 exposure, though some changes in mRNA levels were present. This shows that CO2 as low as 1000 ppm CO2 was capable of altering innate immune responses to both LPS and organic dust extracts, but each response was altered in a different fashion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Morgan Brisse ◽  
Qinfeng Huang ◽  
Mizanur Rahman ◽  
Da Di ◽  
Yuying Liang ◽  
...  

RIG-I and MDA5 are major cytoplasmic innate-immune sensor proteins that recognize aberrant double-stranded RNAs generated during virus infection to activate type 1 interferon (IFN-I) and IFN-stimulated gene (ISG) expressions to control virus infection. The roles of RIG-I and MDA5 in controlling replication of Pichinde virus (PICV), a mammarenavirus, in mice have not been examined. Here, we showed that MDA5 single knockout (SKO) and RIG-I/MDA5 double knockout (DKO) mice are highly susceptible to PICV infection as evidenced by their significant reduction in body weights during the course of the infection, validating the important roles of these innate-immune sensor proteins in controlling PICV infection. Compared to the wildtype mice, SKO and DKO mice infected with PICV had significantly higher virus titers and lower IFN-I expressions early in the infection but appeared to exhibit a late and heightened level of adaptive immune responses to clear the infection. When a recombinant rPICV mutant virus (rPICV-NPmut) that lacks the ability to suppress IFN-I was used to infect mice, as expected, there were heightened levels of IFN-I and ISG expressions in the wild-type mice, whereas infected SKO and DKO mice showed delayed mouse growth kinetics and relatively low, delayed, and transient levels of innate and adaptive immune responses to this viral infection. Taken together, our data suggest that PICV infection triggers activation of immune sensors that include but might not be necessarily limited to RIG-I and MDA5 to stimulate effective innate and adaptive immune responses to control virus infection in mice.


2021 ◽  
Author(s):  
Phillip Wibisono ◽  
Shawndra Wibisono ◽  
Jan Watteyne ◽  
Chia-Hui Chen ◽  
Durai Sellegounder ◽  
...  

A key question in current immunology is how the innate immune system generates high levels of specificity. Like most invertebrates, Caenorhabditis elegans does not have an adaptive immune system and relies solely on innate immunity to defend itself against pathogen attacks, yet it can still differentiate different pathogens and launch distinct innate immune responses. Here, we have found that functional loss of NMUR-1, a neuronal GPCR homologous to mammalian receptors for the neuropeptide neuromedin U, has diverse effects on C. elegans survival against various bacterial pathogens. Transcriptomic analyses and functional assays revealed that NMUR-1 modulates C. elegans transcription activity by regulating the expression of transcription factors, which, in turn, controls the expression of distinct immune genes in response to different pathogens. Our study has uncovered a molecular basis for the specificity of C. elegans innate immunity that could provide mechanistic insights into understanding the specificity of vertebrate innate immunity.


Microbiology ◽  
2006 ◽  
Vol 152 (2) ◽  
pp. 285-293 ◽  
Author(s):  
Gavin K. Paterson ◽  
Tim J. Mitchell

The innate immune system provides a non-specific first line of defence against microbes and is crucial both in the development and effector stages of subsequent adaptive immune responses. Consistent with its importance, study of the innate immune system is a broad and fast-moving field. Here we provide an overview of the recent key advances made in this area with relation to the important pathogen Streptococcus pneumoniae (the pneumococcus).


2018 ◽  
Vol 19 (10) ◽  
pp. 3003 ◽  
Author(s):  
Debora Giordano ◽  
Claudio Pinto ◽  
Luca Maroni ◽  
Antonio Benedetti ◽  
Marco Marzioni

Cholangiocytes, the epithelial cells lining the bile ducts, represent the unique target of a group of progressive diseases known as cholangiopathies whose pathogenesis remain largely unknown. In normal conditions, cholangiocytes are quiescent and participate to the final bile volume and composition. Following exogenous or endogenous stimuli, cholangiocytes undergo extensive modifications of their phenotype. Reactive cholangiocytes actively proliferate and release a set of proinflammatory molecules, which act in autocrine/paracrine manner mediating the cross-talk with other liver cell types and innate and adaptive immune cells. Cholangiocytes themselves activate innate immune responses against gut-derived microorganisms or bacterial products that reach the liver via enterohepatic circulation. Gut microbiota has been implicated in the development and progression of the two most common cholangiopathies, i.e., primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), which have distinctive microbiota composition compared to healthy individuals. The impairment of intestinal barrier functions or gut dysbiosis expose cholangiocytes to an increasing amount of microorganisms and may exacerbate inflammatory responses thus leading to fibrotic remodeling of the organ. The present review focuses on the complex interactions between the activation of innate immune responses in reactive cholangiocytes, dysbiosis, and gut permeability to bacterial products in the pathogenesis of PSC and PBC.


2020 ◽  
Author(s):  
Tobias Vahsen ◽  
Laura Zapata ◽  
Rodrigo Guabiraba ◽  
Elise Melloul ◽  
Nathalie Cordonnier ◽  
...  

Abstract Across the world, many commercial poultry flocks and captive birds are threatened by infection with Aspergillus fumigatus. Susceptibility to aspergillosis varies among birds; among galliform birds specifically, morbidity and mortality rates seem to be greater in turkeys than in chickens. Little is known regarding the features of avian immune responses after inhalation of Aspergillus conidia, and to date, scarce information on inflammatory responses during aspergillosis exists. Thus, in the present study, we aimed to improve our understanding of the interactions between A. fumigatus and economically relevant galliform birds in terms of local innate immune responses. Intra-tracheal aerosolization of A. fumigatus conidia in turkey and chicken poults led to more severe clinical signs and lung lesions in turkeys, but leukocyte recovery from lung lavages was higher in chickens at 1dpi only. Interestingly, only chicken CD8+ T lymphocyte proportions increased after infection. Furthermore, the lungs of infected chickens showed an early upregulation of pro-inflammatory cytokines, including IL-1β, IFN-γ and IL-6, whereas in turkeys, most of these cytokines showed a downregulation or a delayed upregulation. These results confirmed the importance of an early pro-inflammatory response to ensure the development of an appropriate anti-fungal immunity to avoid Aspergillus dissemination in the respiratory tract. In conclusion, we show for the first time that differences in local innate immune responses between chickens and turkeys during aspergillosis may determine the outcome of the disease. Lay Summary Aspergillus fumigatus infection may cause mortality in poultry, depending on species sensitivity. This study confirms the earlier activation of chickens’ pro-inflammatory effectors to control Aspergillus dissemination, whereas turkeys’ immune response enables the exacerbation of lung lesions.


Sign in / Sign up

Export Citation Format

Share Document