Vaccination of rats against the rodent hookworm Nippostrongylus brasiliensis with a recombinant superoxide dismutase fails to protect against infection

2009 ◽  
Vol 54 (3) ◽  
Author(s):  
Glyn Ball ◽  
Dave Knox

AbstractAnti-oxidant enzymes including superoxide dismutase (SOD) protect cells from damage by oxygen radicals produced during respiration. There is also a substantial body of evidence that anti-oxidant enzymes facilitate the survival of parasitic helminths, including gastrointestinal nematodes, within the host. Superoxide dismutase has been shown to be released by a variety of parasitic helminths and may protect them from host mediated oxidative immune responses. As it may play a parasite protective role during infections SOD has been investigated as a vaccine candidate in a range of helminth parasites including Schistosoma mansoni, Acanthocheilonema viteae and Haemonchus contortus. Here, we sought to evaluate the protective potential of SOD against the rat hookworm Nippostrongylus brasiliensis, a commonly utilised laboratory infection, as a vaccination model. A cytosolic SOD from this parasite, with high sequence homology to a putative extracellular form of the enzyme was cloned and then expressed in bacteria. The resultant recombinant protein was assessed for enzyme activity and used to immunise rats prior to a single challenge infection with the parasite. No protection was observed and monitoring systemic and mucosal antibody responses and mast cell protease levels in superoxide dismutase vaccinated rats suggested that this recombinant SOD was only weakly immunogenic.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Atefe Saemi Soudkolaei ◽  
Gholam Ali Kalidari ◽  
Hassan Borji

Abstract Background With the increasing number of free-range domestic chickens, helminth parasites have potentially become more of a threat to commercial flocks in recent years, and routine poultry deworming is needed to improve the efficiency of chicken production. The present study deals with a field trial to study the efficacy of two generally used anthelmintics, fenbendazole and levamisole, against gastrointestinal nematodes of domestic chickens in northern Iran. Methods Of 45 domestic chicken flocks involved in the study, 20 flocks were selected to participate in fecal egg count reduction testing based on flock size from April 2017 to September 2018. The infected chickens were randomly divided into three equal groups of 30 each. Ninety chickens in the infected groups received one of the following treatments (d 0 of treatment): Group 1: 5 mg kg−1 body weight (BW) fenbendazole for 3 consecutive days; Group 2: 16 mg kg−1 BW levamisole; Group 3 control: placebo, water + DMSO (dimethylsulfoxide). The efficacy of the treatments was evaluated by comparing fecal egg counts in the treated and control groups. Results Examination of three flocks of chickens from the control group showed that 95.0% of the animals were infected with gastrointestinal nematodes with an average geometric value of 361 eggs per gram of feces. Fenbendazole at a dose of 5 mg kg−1 BW for 3 days showed an efficacy of 83.7% (P ≥ 0.05), and levamisole at a dose of 16 mg kg−1 BW showed 71.8% efficacy (P ≥ 0.05) with geometric mean eggs in a gram of feces of 100 and 199.6, respectively. In general, fenbendazole and levamisole treatment led to significantly lower activity. The result of this study revealed that fenbendazole was a better and more effective dewormer than levamisole on the three Iranian domestic chicken flocks, but the difference was not significant. Capillaria spp. were the most generally resistant nematodes followed by Trichostrongylus spp. and Amidostomum anseris. Conclusion Our results indicated that fenbendazole and levamisole effectively reduced the number of nemathodes in three Iranian domestic chicken flocks. Given the results of our study, resistance can be expected in the parasitic helminths of poultry. Additional larger scale studies are required to determine the prevalence of anthelmintic resistance in the poultry industry.


2021 ◽  
Author(s):  
Saemi Soudkolaei ◽  
Gholam Ali Kalidari ◽  
Hassan Borji

Abstract Background: With the increasing number of free-range domestic chickens, helminth parasites have potentially become more of a threat in commercial flocks in recent years, and routine poultry deworming is needed to improve efficiency of chicken products. The present study deals with a field trial to study the efficiency of two generally used anthelmintics, Fenbendazole and Levamisole, against gastrointestinal nematodes of domestic chickens in north of Iran. Methods: Out of 45 domestic chicken flocks involved in the study, 20 flocks were selected to participate in fecal egg count reduction testing based on flock size from April 2017 to September 2018. The infected chickens were randomly divided into three equal groups of 30 each. Ninety chickens in the infected groups received one of the following treatments (d 0 of treatment): Group 1: 5 mg kg−1 body weight (BW) Fenbendazole for three consecutive days, Group 2: 16 mg kg−1 BW Levamisole, and Group 3 control: placebo; water + DMSO [1]. The efficiency of the treatments were evaluated by comparing fecal egg count in the treated and control groups.Results: Examination of 3 herds of chicken from the control group showed that 95.0% of the animals were infected with gastrointestinal nematodes with an average geometric value of 361 eggs per gram of feces. Fenbendazole at a dose of 5 mg kg−1 BW for three days showed an efficiency of 83.7% (P ≥0.05), and Levamisole at a dose of 16 mg kg−1 BW showed 71.8% (P ≥0.05) with geometric mean eggs in a gram of feces 100 and 199.6, respectively. In general, Fenbendazole and Levamisole showed significantly lower activity. The result of this study revealed that Fenbendazole was a better and effective dewormer than Levamisole on the three Iranian domestic chicken flocks, but it is not significant. Capillaria spp., were the most generally resistant nematodes followed by Trichostrongylus spp., and Amidostomum anseris.Conclusion: Our results indicated that Fenbendazole and Levamisole reduced number of nemathodes effectively in three Iranian domestic chicken flocks. Given the results of our study, it is possible that resistance may be expected in the parasitic helminths of poultry. Additional studies with a larger scale are required to determine the prevalence of anthelmintic resistance in the poultry industry.


2010 ◽  
Vol 65 (5-6) ◽  
pp. 419-428 ◽  
Author(s):  
Julia Serkedjieva ◽  
Tsvetanka Stefanova ◽  
Ekaterina Krumova

The combined protective effect of a polyphenol-rich extract, isolated from Geranium sanguineum L. (PC), and a novel naturally glycosylated Cu/Zn-containing superoxide dismutase, produced from the fungal strain Humicula lutea 103 (HL-SOD), in the experimental influenza A virus infection (EIVI) in mice, induced with the virus A/Aichi/2/68 (H3N2), was investigated. The combined application of HL-SOD and PC in doses, which by themselves do not defend significantly mice in EIVI, resulted in a synergistically increased protection, determined on the basis of protective indices and amelioration of lung injury. Lung weights and consolidation as well as infectious lung virus titers were all decreased significantly parallel to the reduction of the mortality rates; lung indices were raised. The excessive production of reactive oxygen species (ROS) by alveolar macrophages (aMØ) as well as the elevated levels of the lung antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), induced by EIVI, were brought to normal. For comparative reasons the combined protective effect of PC and vitamin C was investigated. The obtained results support the combined use of antioxidants for the treatment of influenza virus infection and in general indicate the beneficial protective role of combinations of viral inhibitors of natural origin with diverse modes of action.


2021 ◽  
Vol 22 (3) ◽  
pp. 1200
Author(s):  
Yoshimi Kishimoto ◽  
Kazuo Kondo ◽  
Yukihiko Momiyama

Atherosclerotic disease, such as coronary artery disease (CAD), is known to be a chronic inflammatory disease, as well as an age-related disease. Excessive oxidative stress produced by reactive oxygen species (ROS) contributes to the pathogenesis of atherosclerosis. Sestrin2 is an anti-oxidant protein that is induced by various stresses such as hypoxia, DNA damage, and oxidative stress. Sestrin2 is also suggested to be associated with aging. Sestrin2 is expressed and secreted mainly by macrophages, endothelial cells, and cardiomyocytes. Sestrin2 plays an important role in suppressing the production and accumulation of ROS, thus protecting cells from oxidative damage. Since sestrin2 is reported to have anti-oxidant and anti-inflammatory properties, it may play a protective role against the progression of atherosclerosis and may be a potential therapeutic target for the amelioration of atherosclerosis. Regarding the association between blood sestrin2 levels and atherosclerotic disease, the blood sestrin2 levels in patients with CAD or carotid atherosclerosis were reported to be high. High blood sestrin2 levels in patients with such atherosclerotic disease may reflect a compensatory response to increased oxidative stress and may help protect against the progression of atherosclerosis. This review describes the protective role of sestrin2 against the progression of atherosclerotic and cardiac diseases.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 553 ◽  
Author(s):  
Donald P. McManus

Liver flukes (Fasciola spp., Opisthorchis spp., Clonorchis sinensis) and blood flukes (Schistosoma spp.) are parasitic helminths causing neglected tropical diseases that result in substantial morbidity afflicting millions globally. Affecting the world’s poorest people, fasciolosis, opisthorchiasis, clonorchiasis and schistosomiasis cause severe disability; hinder growth, productivity and cognitive development; and can end in death. Children are often disproportionately affected. F. hepatica and F. gigantica are also the most important trematode flukes parasitising ruminants and cause substantial economic losses annually. Mass drug administration (MDA) programs for the control of these liver and blood fluke infections are in place in a number of countries but treatment coverage is often low, re-infection rates are high and drug compliance and effectiveness can vary. Furthermore, the spectre of drug resistance is ever-present, so MDA is not effective or sustainable long term. Vaccination would provide an invaluable tool to achieve lasting control leading to elimination. This review summarises the status currently of vaccine development, identifies some of the major scientific targets for progression and briefly discusses future innovations that may provide effective protective immunity against these helminth parasites and the diseases they cause.


Author(s):  
Neetha Kundoor ◽  
Shruti Mohanty ◽  
Radha Kishan Narsini ◽  
T. Naveen Kumar

To assess adjustments in star oxidant and cancer prevention agent state in pre and post hemodialysis patients experiencing ceaseless renal disease. The study was led on 100 perpetual renal disappointment patients going to outpatient division of nephrology dialysis unit in relationship with bureau of organic chemistry at Kamineni establishment of therapeutic Sciences, Narketpally, Nalgonda district, Telangana. Age between 30-70 years of either sex measuring their estimated oxidant levels of serum malondialdehyde, serum protein carbonyls and anti-oxidant levels of serum superoxide dismutase, serum catalase prior and then afterward the dialysis session coordinated controls. In the present study, we have observed significant increase in levels of pro-oxidants serum malondialdehyde and serum protein carbonyls fixation and there was reduction in chemical action of cell reinforcement serum superoxide dismutase and serum catalase. Our study highlights the need of screening of cancerous agents in renal Patients in regular intervals for better treatment outcomes and also to improve quality of life of the patients.


2009 ◽  
Vol 206 (13) ◽  
pp. 2947-2957 ◽  
Author(s):  
De'Broski R. Herbert ◽  
Jun-Qi Yang ◽  
Simon P. Hogan ◽  
Kathryn Groschwitz ◽  
Marat Khodoun ◽  
...  

Th2 cells drive protective immunity against most parasitic helminths, but few mechanisms have been demonstrated that facilitate pathogen clearance. We show that IL-4 and IL-13 protect against intestinal lumen-dwelling worms primarily by inducing intestinal epithelial cells (IECs) to differentiate into goblet cells that secrete resistin-like molecule (RELM) β. RELM-β is essential for normal spontaneous expulsion and IL-4–induced expulsion of Nippostrongylus brasiliensis and Heligmosomoides polygyrus, which both live in the intestinal lumen, but it does not contribute to immunity against Trichinella spiralis, which lives within IEC. RELM-β is nontoxic for H. polygyrus in vitro but directly inhibits the ability of worms to feed on host tissues during infection. This decreases H. polygyrus adenosine triphosphate content and fecundity. Importantly, RELM-β–driven immunity does not require T or B cells, alternative macrophage activation, or increased gut permeability. Thus, we demonstrate a novel mechanism for host protection at the mucosal interface that explains how stimulation of epithelial cells by IL-4 and IL-13 contributes to protection against parasitic helminthes that dwell in the intestinal lumen.


Sign in / Sign up

Export Citation Format

Share Document