Impact of Vitamins C and E supplement on anti-oxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase) and lipid peroxidation product (malondialdehyde levels) in sickle subjects

2016 ◽  
Vol 19 (2) ◽  
pp. 100 ◽  
Author(s):  
OfemEffiong Ofem ◽  
Okot-AsiThomas Nku-Ekpang ◽  
VictorOtu Oka ◽  
SmithI Jaja
Author(s):  
Devrim Saribal ◽  
F Sinem Hocaoglu-Emre ◽  
Birsen Aydemir ◽  
Mehmet Can Akyolcu

Background and objective: Oxidative stress has important role in pathogenesis of chronic obstructive pulmonary disease (COPD). There are studies suggesting the role of increased oxidative stress and decreased antioxidants in COPD patients. The aim of this study was to assess the levels of oxidative and anti-oxidant system elements, serum concentrations of trace elements and blood viscosity in COPD patients. Methods: Our study group consisted of 25 male patients with COPD, and 25 healthy non-smokers. The lipid peroxidation product malondialdehyde (MDA) and anti-oxidant system elements superoxide dismutase (SOD), Catalase (CAT) and Glutathione (GSH) were measured spectrophotometrically. Serum concentrations of Copper (Cu), Zinc (Zn) and Iron (Fe) were determined using an atomic absorption spectrophotometer. Additionally, we measured blood viscosity using a viscosimeter. Results: Lipid peroxidation product MDA levels were found to be higher in plasma and erythrocytes. However GSH levels, SOD and Catalase enzyme activities were lower in erythrocytes of patient group than that of controls (p<0,01). Fe and Zn levels were decreased, whereas Cu levels were increased in patient samples (p<0,05; p<0,01, respectvely). There was no statistically significant difference between plasma and blood viscosities. Conclusions: The results of this study indicate that COPD leads to the lipid peroxidation in erythrocyte membrane, and decreased levels of anti-oxidant system elements. Serum trace element concentrations were found to be altered in COPD patients, suggesting their interaction with oxidant and anti-oxidant enzymes.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Israel Pérez-Torres ◽  
Verónica Guarner-Lans ◽  
Alejandra Zúñiga-Muñoz ◽  
Rodrigo Velázquez Espejel ◽  
Alfredo Cabrera-Orefice ◽  
...  

We report the effect of cross-sex hormonal replacement on antioxidant enzymes from rat retroperitoneal fat adipocytes. Eight rats of each gender were assigned to each of the following groups: control groups were intact female or male (F and M, resp.). Experimental groups were ovariectomized F (OvxF), castrated M (CasM), OvxF plus testosterone (OvxF + T), and CasM plus estradiol (CasM + E2) groups. After sacrifice, retroperitoneal fat was dissected and processed for histology. Adipocytes were isolated and the following enzymatic activities were determined: Cu-Zn superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST), and glutathione reductase (GR). Also, glutathione (GSH) and lipid peroxidation (LPO) were measured. In OvxF, retroperitoneal fat increased and adipocytes were enlarged, while in CasM rats a decrease in retroperitoneal fat and small adipocytes are observed. The cross-sex hormonal replacement in F rats was associated with larger adipocytes and a further decreased activity of Cu-Zn SOD, CAT, GPx, GST, GR, and GSH, in addition to an increase in LPO. CasM + E2exhibited the opposite effects showing further activation antioxidant enzymes and decreases in LPO. In conclusion, E2deficiency favors an increase in retroperitoneal fat and large adipocytes. Cross-sex hormonal replacement in F rats aggravates the condition by inhibiting antioxidant enzymes.


2003 ◽  
Vol 22 (6) ◽  
pp. 423-427 ◽  
Author(s):  
Mary Otsyula ◽  
Matthew S. King ◽  
Tonya G. Ketcham ◽  
Ruth A. Sanders ◽  
John B. Watkins

Two of the models used in current diabetes research include the hypergalactosemic rat and the hyperglucosemic, streptozotocin-induced diabetic rat. Few studies, however, have examined the concurrence of these two models regarding the effects of elevated hexoses on biomarkers of oxidative stress. This study compared the activities of superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase and the concentrations of glutathione, glutathione disulfide, and thiobarbituric acid reactants (as a measure of lipid peroxidation) in liver, kidney, and heart of Sprague-Dawley rats after 60 days of either a 50% galactose diet or insulin deficiency caused by streptozotocin injection. Most rats from both models developed bilateral cataracts. Blood glucose and glycosy-lated hemoglobin A1c concentrations were elevated in streptozotocin diabetic rats. Streptozotocin diabetic rats exhibited elevated activities of renal superoxide dismutase, cardiac catalase, and renal and cardiac glutathione peroxidase, as well as elevated hepatic lipid peroxidation. Insulin treatment of streptozotocin-induced diabetic rats normalized altered markers. In galactosemic rats, hepatic lipid peroxidation was increased whereas glutathione reductase activity was diminished. Glutathione levels in liver were decreased in diabetic rats but elevated in the galactosemic rats, whereas hepatic glutathione disulfide concentrations were decreased much more in diabetes than in galactosemia. Insulin treatment reversed/prevented all changes caused by streptozotocin-induced diabetes. Lack of concomitance in these data indicate that the 60-day galactose-fed rat is not experiencing the same oxidative stress as the streptozotocin diabetic rat, and that investigators must be cautious drawing conclusions regarding the concurrence of the effects of the two animal models on oxidative stress biomarkers.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Geetanjali Jindal ◽  
Prashant Chavan ◽  
Ravinder Kaur ◽  
Shivani Jaswal ◽  
Kamal Kumar Singhal ◽  
...  

<p>The present study evaluates carotid intimamedia thickness (CIMT) in children with β thalassemia major to assess atherosclerosis and its relation to the underlying proposed causative mechanisms <em>via</em> lipid peroxidation product malondialdehyde (MDA), oxidized lowdensity lipoproteins (LDL), total antioxidant level, and lipid profile. A cross sectional study was conducted on 62 children (31 cases and 31 controls). CIMT by high resolution ultrasound and biochemical parameters <em>i.e.</em>, total cholesterol, triglycerides, high-density lipoproteins, LDL, Oxidized LDL, lipoprotein (a), lipid peroxidation product MDA and total antioxidant were measured in enrolled subjects and compared. In our study, CIMT was significantly increased in β thalassemia major patients’ as compared to healthy controls. Mean CIMT in cases was 0.69±0.11 mm and in controls 0.51±0.07 mm. Mean oxidized LDL (EU/mL) in cases 39.3±34.4 (range 14.4 to 160) was significantly raised (P=0.02, t test) as compared to controls 23.9±13.4 (range 12 to 70). In our study we found MDA levels (nmol/mL) to be increased in β thalassemia patients as compared to controls. Mean MDA was 10.0±3.27 (4.41 to 17.48) in cases while in controls was 6.87±4.55 (1.5 to 17.9). Our study results show CIMT as an early marker of atherogenesis in β thalassemia major. Oxidative stress markers are also increased in β thalassemia major patients and lipoprotein (a) shows a positive correlation with CIMT. The present study points towards various atherogenetic mechanisms in β thalassemia major.</p><p> </p><p>本研究评价β重型地中海贫血患儿颈动脉内膜中层厚度(CIMT),以评估动脉粥样硬化,以及与潜在通过血脂过氧化反应产物丙二醛(MDA)、氧化低密度脂蛋白(LDL)、总抗氧化水平和血脂谱所提出致病机制之间的关系。 在62名儿童(31例病例和31例对照)中进行了一项横断面研究。 在入组受试者中通过高分辨率超声和生化指标(即总胆固醇、甘油三酯、高密度脂蛋白、LDL、氧化LDL,脂蛋白(a)、血脂过氧化产物MDA和总抗氧化剂)测量CIMT并进行比较。 在我们的研究中,CIMT在β重型地中海贫血患者中比健康对照组显著增加。 病例组中的平均CIMT为0.69±0.11 mm,对照组0.51±0.07 mm。病例组中平均氧化LDL(EU/mL)为39.3±34.4(从14.4到160的范围)与对照组的23.9±13.4(12至70的范围)相比显著升高(P = 0.02,t检验)。 在我们的研究中,我们发现β地中海贫血患者中的MDA水平(nmol/mL)比对照组更高。 病例组中的平均MDA为10.0±3.27(4.41至17.48),而对照组为6.87±4.55(1.5到17.9)。 我们的研究结果表明,CIMT是β重型地中海贫血动脉粥样硬化的早期标记物。 氧化应激标记物在β重型地中海贫血患者中也有增加,脂蛋白(a)显示出与CIMT呈正相关。 本研究针对β重型地中海贫血中的各种动脉粥样硬化机制。</p>


Author(s):  
Б. В. Гутий

Розкрито особливості антиоксидантної системиорганізму щурів за хронічного кадмієвого токсикозу.Встановлено, що хлорид кадмію у токсичній дозісприяє зниженню активності ферментної й нефер-ментної системи антиоксидантного захисту, на щовказує зниження ферментів глутатіонпероксидази,глутатіонредуктази, супероксиддисмутази, катала-зи та відновленого глутатіону у печінці щурів. Ре-зультати досліджень вказують на те, що хронічнийкадмієвий токсикоз призводить до посиленої акти-вації процесів ліпопероксидації. The features of the antioxidant system of rats with chronic cadmium toxicosiare disclosed. It wasresearched that cadmium chloride in toxic doses reduces enzyme activity of antioxidant system, asindicated by the decrease in enzyme glutathione peroxidase, hlutationreduktazy, superoxide dismutase,catalase and restored glutathione in the liver and blood of rats. The results indicate that chroniccadmium toxicosis leads to enhanced activation of lipid peroxidation.


2016 ◽  
Vol 18 (2(66)) ◽  
pp. 52-59
Author(s):  
B.V. Gutyj ◽  
Y. Lavryshyn ◽  
V. Binkevych ◽  
O. Binkevych ◽  
О. Paladischuk ◽  
...  

The article contains the research results of the effect of cadmium chloride on the indexes of enzyme and nonenzyme systems of  antioxidant defense system in young cattle, such as the activity of catalase, superoxide dismutase, glutathione peroxidase, glutathione levels of vitamins A and E. It is established that feeding calves at a dose of toxicant 0.04 mg / kg activity of catalase, superoxide dismutase, glutathione peroxidase, glutathione levels of vitamins A and E in the blood of experimental animals decreased throughout the experiment. The lowest indicators of antioxidant in the blood of young cattle is set on the twenty -fourth day of the experiment, which is associated with increased activation of lipid peroxidation and the balance between antioxidant system and lipid peroxidation intensity. Given the cadmium load of young cattle it is used a new integrated drug with antioxidant action «Metisevit», which includes metifen, sodium selenite and vitamin E wich is founded as stimulating effects on the activity of antioxidant protection. In particular,it is established probable increase in activity of catalase, superoxide dismutase, glutathione peroxidase, glutathione levels, vitamin A and vitamin E in the blood of young cattle, which has performed cadmium stress. These changes occur through comprehensive action components of the drug «Metisevit» that leads to the normalization of metabolic processes and free radical in the body of the bull. The results of the research indicate antioxidant drug «Metisevit» in the application of its young cattle and the validity of his administration to improve the body's antioxidant status of chronic cadmium toxicosis.


Sign in / Sign up

Export Citation Format

Share Document