scholarly journals Influence of the root-knot nematode Meloidogyne incognita r. 1 on growth of grapevine

2006 ◽  
Vol 43 (3) ◽  
pp. 168-170 ◽  
Author(s):  
N. Sasanelli ◽  
T. D’Addabbo ◽  
M. Lišková

AbstractThe effect of Meloidogyne incognita race 1 at different population densities (0, 0.0625, 0.125, 0.25,... 256 eggs and juveniles/cm3 soil) on the growth of a rootstock (1103 Paulsen) and a cv. Italia of grapevine was studied in glasshouse experiment. One-year-old, self-rooted plants were transplanted into 1,200 cm3 plastic pots containing soil infested by M. incognita race 1 at different inoculum levels. Reproduction of M. incognita race 1 was significantly higher on cv. Italia than on the rootstock 1103 Paulsen. Tolerance limits (T) of 1.28 and 0.78 eggs and juveniles/cm3 soil were estimated respectively for 1103 Paulsen and Italia. Minimum relative plant growth of 0.55, 0.80 and 0.85, respectively for shoot length and node number increase and fresh top weight, were estimated for 1103 Paulsen; whereas values of 0.25, 0.50 and 0.60 were assessed for the cv. Italia. Nematode equilibrium density was 33.6 and 137.8 eggs and juveniles/cm3 soil, on 1103 Paulsen and Italia, respectively.

Nematology ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 373-380
Author(s):  
Santino A. Silva ◽  
Anderson C.G. Bicalho ◽  
Débora C. Santiago ◽  
Lucas S. Cunha ◽  
Andressa C.Z. Machado

Summary One of the concerns for nematological research is the absence of information on standard nematode population densities to be used when screening to assess resistance/susceptibility levels of a genotype. In addition, the length of the growth period, especially for perennial crops such as coffee, must also be known. The objective of this work was to evaluate the ideal evaluation periods and population densities of the root-knot nematode, Meloidogyne incognita, for phenotyping Coffea arabica genotypes. Seedlings of coffee ‘Mundo Novo’ with five leaf pairs cropped in 700 cm3 plastic pots were inoculated with population densities of 700, 1400, 2800, 5600 and 11 200 eggs of M. incognita per plant and evaluated at 90, 120, 150 and 180 days after inoculation (DAI) to determine the nematode reproduction factor (RF). The use of population densities of M. incognita from 700-2000 nematodes with evaluations between 90 and 180 DAI was the most suitable to obtain higher RF values and allows earlier and more accurate evaluations, which reduces the time for phenotyping in genetic screening programmes.


2008 ◽  
Vol 48 (1) ◽  
pp. 73-80
Author(s):  
Jonathan Atungwu ◽  
Steve Afolami ◽  
Olufunke Egunjobi ◽  
Opeyemi Kadri

Pathogenicity ofMeloidogyne IncognitaonSesamum Indicumand the Efficacy of Yield-Based Scheme in Resistance DesignationTwo screenhouse experiments were conducted in 2004 and 2005 rainy season to investigate the reaction of three selectedSesamum indicumcultivars against three population densities of a root knot nematode,Meloidogyne incognita.Seedlings ofS. indicumwere raised in pots arranged in completely randomised design and inoculated with 0, 5 000, and 10 000 eggs ofM. incognita, replicated six times. Root knot disease was evaluated at mid-season and harvest. A new method for evaluating and reporting resistance toMeloidogynespp. that divides the screening procedure into two phases in the same experiment was adapted. The first phase investigated the host response through the traditional standard method that utilises only gall and nematode reproduction indices, while the second considered the effect of root knot disease on grain production of the crop. There was consistency in host designation of E8 and NICRIBEN-01M (syn: 530-1-6) which were classified under the traditional and improved rating schemes as tolerant and resistant, respectively. However,S. indicumbreeding line Pbtil (No. 1) which was considered susceptible under the old system was found to be tolerant using the integrated and improved system. Root galls incited by the nematode degenerated significantly from mid-season to harvest time. Utilising yield as additional parameter for assessing resistance to root knot nematode provides a complete picture ofSesamum-Meloidogyneinteraction, and therefore a more meaningful system for determining host response.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 868e-869
Author(s):  
J.A. Thies

Thirteen sweetpotato (Ipomoea batatas) genotypes were characterized for resistance to Meloidogyne incognita, M. javanica, M. hapla, and M. arenaria races 1 and 2 in greenhouse tests. The following sweetpotato genotypes representing a range of reactions to M. incognita were evaluated: U.S. Plant Introduction (PI) 399163 (highly resistant = HR), Sumor (HR), Nemagold (HR), Excel (HR), Tinian (HR), Hernandez (resistant = R), Jewel (R), Regal (R), Porto Rico (intermediate = I), Centennial (susceptible = S), Georgia Jet (S), Sulfur (S), and Beauregard (S). Meloidogyne incognita was most pathogenic to sweetpotato of the four Meloidogyne spp. evaluated in these studies. The U.S. Plant Introduction (PI) 399163 and Sumor were resistant to M. incognita in all tests. Only two genotypes, Beauregard and Porto Rico, were susceptible to M. javanica. All genotypes evaluated were resistant to M. hapla, M. arenaria race 1, and M. arenaria race 2. Sumor, U.S. PI 399163, and Nemagold appear to provide the highest levels of resistance against the four Meloidogyne spp. used in these studies. Since M. incognita is the most commonly occurring root-knot nematode species in sweetpotato growing areas of the southern U.S. and is pathogenic to most of the commonly grown sweetpotato cultivars, efforts to develop resistant cultivars that have desirable horticultural characteristics for the U.S. market should be directed toward this root-knot nematode species.


Nematology ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 489-496 ◽  
Author(s):  
Gaku Murata ◽  
Tomoyuki Takai ◽  
Kenta Uesugi

Summary Commercially available sorghum cultivars were tested for resistance to Meloidogyne incognita in order to select cultivars that combine fodder production with M. incognita population management. Initially in a pot test with 12 sorghum cultivars, ‘Kyushuko 3 go’, a sorghum hybrid, supported very low M. incognita reproduction approximately 40 days after inoculation (dai) with 500 second-stage juveniles (J2) pot−1, similar to the resistant green manure ‘Tsuchitaro’. Further tests for development of M. incognita in roots (20 dai with 150 J2 (root system)−1) indicated that the resistance of ‘Kyushuko 3 go’ acts after nematode root penetration. In field tests in 2015 and 2016, ‘Kyushuko 3 go’ suppressed M. incognita population densities, although some variations in field conditions may influence reproduction of M. incognita on ‘Kyushuko 3 go’. These findings demonstrated M. incognita-resistant fodder sorghum cultivars could be a useful alternative to susceptible cultivars for root-knot nematode management.


Plant Disease ◽  
2018 ◽  
Vol 102 (9) ◽  
pp. 1820-1827 ◽  
Author(s):  
Anthony P. Keinath ◽  
Paula A. Agudelo

Interspecific hybrid squash (Cucurbita maxima × C. moschata ‘Strong Tosa’) and bottle gourd (Lagenaria siceraria ‘Macis’) rootstocks are resistant to Fusarium oxysporum f. sp. niveum but susceptible to Meloidogyne incognita (Southern root-knot nematode). Coinfection of Early Prolific Straightneck summer squash (C. pepo) with root-knot nematode and F. oxysporum f. sp. niveum has been reported to increase susceptibility to Fusarium wilt. The objectives of this study were to determine whether such an interaction occurred between M. incognita and F. oxysporum f. sp. niveum races 1 and 2 on Strong Tosa, Macis, and watermelon cultivars Fascination (resistant to race 1) and Tri-X 313 (susceptible to both races). Hosts were inoculated in a greenhouse with one of four pathogen treatments: F. oxysporum f. sp. niveum, M. incognita, both pathogens, or neither pathogen. Galling was present on ≥10% of the root systems of 90% of the plants inoculated with M. incognita. Bottle gourd had less galling than interspecific hybrid squash. Plants not inoculated with F. oxysporum f. sp. niveum did not wilt. Four weeks after inoculation, incidence and severity of Fusarium wilt and recovery of F. oxysporum did not differ for any hosts inoculated with F. oxysporum f. sp. niveum alone and F. oxysporum f. sp. niveum plus M. incognita (host–treatment interactions not significant). In general, Early Prolific Straightneck grouped with the F. oxysporum f. sp. niveum-resistant rootstocks when inoculated with F. oxysporum f. sp. niveum race 2 and with the susceptible watermelon when inoculated with race 1, regardless of inoculation with M. incognita. Recovery of F. oxysporum from stems of inoculated watermelon was greater than recovery from the other three hosts, regardless of nematode inoculation. In conclusion, our experiments do not support the hypothesis that resistance to F. oxysporum f. sp. niveum in cucurbit rootstocks or resistant watermelon cultivars would be compromised when M. incognita infects the roots.


Nematology ◽  
2007 ◽  
Vol 9 (6) ◽  
pp. 845-851 ◽  
Author(s):  
Maria Célia Cordeiro ◽  
Regina Carneiro ◽  
Pedro Cirotto ◽  
Luiz de Mesquita ◽  
Maria Ritta Almeida ◽  
...  

AbstractAn obligate parasite bacterium of the root-knot nematode, Pasteuria penetrans strain P10, isolated from Meloidogyne incognita females on banana roots in Imperatriz Maranhão State, Brazil, was evaluated in glasshouse conditions, using two doses of a dry root bionematicide (107 endospores (5.0 g/seedling) and 106 endospores (0.5 g/seedling)) on seedlings of cv. Mundo Novo coffee. The soil in which coffee seedlings were raised was inoculated previously with these two doses of P. penetrans and after 2 months the plants were transferred to soils of different textures: clay-sandy soil (38% clay, 2% silt and 60% sand) and sandy soil (17% clay, 0% silt and 83% sand). When the coffee plants were 30 cm high, they were inoculated with 20 000 eggs/plant of M. incognita race 1. The coffee plants were examined 8, 16 and 24 months after nematode plant infestation. The effectiveness of the biological control was determined by the reduction of nematode reproduction factor, which ranged from 62 to 67% in clay-sandy soil and 80 to 85% in sandy soil. The mechanism of suppression caused by the bacterium was evaluated by the percentage of infected second-stage juveniles (J2), number of endospores attached/J2 and number of infected females. The high levels of suppression were related to time, increasing from 8 to 24 months, and to the percentage of sand in the soil.


2009 ◽  
Vol 27 (3) ◽  
pp. 335-339
Author(s):  
José Luiz S de Carvalho Filho ◽  
Luiz Antonio A Gomes ◽  
Felipe A Biguzzi ◽  
Wilson Roberto Maluf ◽  
Sindynara Ferreira

The objective of this study was to evaluate yield, commercial characteristics, tolerance to early bolting and resistance to the root-knot nematode Meloidogyne incognita race 1 in 25 F4 families of crispleaf lettuce, obtained out of crosses between cultivars Grand Rapids, Regina 71, and Verônica. In the first experiment, we evaluate leaf blade and borders characteristics, aboveground fresh weight, and number of days from sowing to the anthesis of first flower (tolerance to early bolting). In the second experiment, we evaluated the resistance to Meloidogyne incognita race 1 via gall index and number of galls and egg masses per root system. Five families had scores for leaf blade and borders similar to cultivars Verônica and Grand Rapids. Furthermore, 84% of the families were as tolerant to early bolting as cultivar Veronica, while 92% of the families were homozygous for resistance to Meloidogyne incognita race 1.


2018 ◽  
Vol 7 (2) ◽  
pp. 222-224
Author(s):  
Gulwaiz Akhter ◽  
◽  
Tabreiz Ahmad Khan ◽  

Thirty brinjal varieties were screened for their resistance / susceptibility to root-knot nematode (Meloidogyne incognita race-1) infestation. Out of 30 brinjal varieties, eighteen varieties viz., Black Beauty, Brinjal 1 hybrid, Brinjal No.38, Chamak, Govinda, Green round, Nagina, Nav Kiran, Neel Kamal, Nishant, P.K-123, Prabha Kiran, Prasad, Sukhda, Surya Kiran, i9Utkal, VNR-51 and VNR-60 were highly susceptible, seven varieties (Brinjal Advance, Brinjal BSS1013, Green long, Harshit, Prapti, Shamli and Ujjwal) were susceptible, two varieties (Mahy 112 and Mahy Ruby) were tolerant, two varieties (Hybrid green and JK Kajal) were moderately resistant and only one variety Mahy 80 was resistant against Meloidogyne incognita race-1. To the best of our knowledge, Mahy 80 variety was ported to be resistant against root-knot nematode, M. incognita race-1 for the first time


1973 ◽  
Vol 53 (4) ◽  
pp. 837-841 ◽  
Author(s):  
P. W. JOHNSON ◽  
C. D. McKEEN

The southern root-knot nematode, Meloidogyne incognita (Kofoid and White 1919) Chitwood 1949, escaped control by steam, Vorlex, or a combination of both at soil depths below 100 cm in naturally infested sandy loam greenhouse soil. Nematodes moved upward to infest the subsequent crop. In microplot studies M. incognita moved rapidly in both directions through a soil depth of 150 cm. High nematode population densities and root gall indices on tomato (Lycopersicon esculentum Mill.) roots were recorded through depths of 150 cm in soil inoculated with 4,400 M. incognita/kg in the top 30 cm or 120–135 cm below the surface. In the top 30 cm of soil this initial population density reduced tomato yield by 20% in the first crop and 70% in the second. Similar population densities 120–135 cm from the soil surface reduced tomato yield by 11% in the first crop and 59% in the second.


Sign in / Sign up

Export Citation Format

Share Document