scholarly journals Response of brinjal (Solanum melongena L.) varieties for resistance against root-knot nematode, Meloidogyne incognita race-1

2018 ◽  
Vol 7 (2) ◽  
pp. 222-224
Author(s):  
Gulwaiz Akhter ◽  
◽  
Tabreiz Ahmad Khan ◽  

Thirty brinjal varieties were screened for their resistance / susceptibility to root-knot nematode (Meloidogyne incognita race-1) infestation. Out of 30 brinjal varieties, eighteen varieties viz., Black Beauty, Brinjal 1 hybrid, Brinjal No.38, Chamak, Govinda, Green round, Nagina, Nav Kiran, Neel Kamal, Nishant, P.K-123, Prabha Kiran, Prasad, Sukhda, Surya Kiran, i9Utkal, VNR-51 and VNR-60 were highly susceptible, seven varieties (Brinjal Advance, Brinjal BSS1013, Green long, Harshit, Prapti, Shamli and Ujjwal) were susceptible, two varieties (Mahy 112 and Mahy Ruby) were tolerant, two varieties (Hybrid green and JK Kajal) were moderately resistant and only one variety Mahy 80 was resistant against Meloidogyne incognita race-1. To the best of our knowledge, Mahy 80 variety was ported to be resistant against root-knot nematode, M. incognita race-1 for the first time

2012 ◽  
Vol 10 (3) ◽  
pp. 258-260 ◽  
Author(s):  
Mohar Singh ◽  
Z. Khan ◽  
Krishna Kumar ◽  
M. Dutta ◽  
Anju Pathania ◽  
...  

Fusarium wilt caused by Fusarium oxysporum, Schlecht. emend. Snyd. & Hans. f. sp. ciceri is prevalent in most chickpea-growing countries and is a major devastating disease. Host plant resistance is the most practical method of disease management. Indigenous chickpea germplasm reveals a heterogeneous genetic make-up and the response of resistance to wilt is an unexplored potential source for disease resistance. There are 70 indigenous germplasm lines selected on the basis of their agronomic performance and diverse areas of collections in the country. Of these, four accessions had a highly resistant score of 1 and six had a score of 3 using a 1–9 rating scale, indicating their level of resistance to Fusarium wilt (race 4). Other germplasm accessions of chickpea were found to be moderately resistant to highly susceptible disease reaction. Likewise, the same set of germplasm was also screened for Meloidogyne incognita (race 1) using pot culture under controlled condition. Only one accession was found to be resistant to this pest. These resistant gene sources can be utilised effectively for race-specific chickpea wilt and root-knot resistance breeding programmes.


Agriculture ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 157 ◽  
Author(s):  
Namisy ◽  
Chen ◽  
Prohens ◽  
Metwally ◽  
Elmahrouk ◽  
...  

Bacterial wilt, caused by Ralstonia solanacearum, is highly diverse and the identification of new sources of resistance for the incorporation of multiple and complementary resistance genes in the same cultivar is the best strategy for durable and stable resistance. The objective of this study was to screen seven accessions of cultivated eggplant (Solanum melongena L.) and 40 accessions from 12 wild relatives for resistance to two virulent R. solanacearum strains (Pss97 and Pss2016; phylotype I, race 1, biovar 3). The resistant or moderately resistant accessions were further evaluated with Pss97 in a second trial under high temperatures (and also with Pss2016 for S. anguivi accession VI050346). The resistant control EG203 was resistant to Pss97, but only moderately resistant to Pss2016. One accession of S. sisymbriifolium (SIS1) and two accessions of S. torvum (TOR2 and TOR3) were resistant or moderately resistant to Pss97 in both trials. Solanum anguivi VI050346, S. incanum accession MM577, and S. sisymbriifolium (SIS1 and SIS2) were resistant to Pss2016 in the first trial. However, S. anguivi VI050346 was susceptible in the second trial. These results are important for breeding resistant rootstocks and cultivars that can be used to manage this endemic disease.


Author(s):  
Refik Bozbuga ◽  
H. Yildiz Dasgan ◽  
Yelderem Akhoundnejad ◽  
Mustafa Imren ◽  
Halil Toktay ◽  
...  

Root knot nematodes (<italic>Meloidogyne</italic> spp.) cause immense yield losses in crops throughout the world. Use of resistant germplasms of plants limits the root knot nematode damages. In this study, 87 common bean (<italic>Phaseoulus vulgaris</italic> L.) genotypes were screened against the root knot nematode, <italic>Meloidogyne incognita</italic> to determine the resistance response under growth chamber conditions in Turkey. <italic>P. vulgaris</italic> genotypes were evaluated based on resistance index (RI); root galling severity and nematode egg mass production on a 1-9 scale. The nematode negatively influenced the growth (fresh weight) of bean genotypes. At the completion of the study, 13 bean genotypes were found as immune (Sehirali), highly resistant (TR42164, Seleksiyon 5, Seker Fasulye, Fas-Agadir-Suk-1) and moderately resistant (Acik Badem, TR68587, TR43477, TR53827, TR28018, Gülnar-3, Siyah Fasulye, Kibris Amerikan) against <italic>M. incognita</italic> thus suggesting the use of such genotypes in breeding studies as a parental material to develop the root knot nematode resistant cultivars.


2020 ◽  
Vol 49 (3) ◽  
pp. 579-584
Author(s):  
Ifra Siddique ◽  
Ishrat Naz ◽  
Raja Asad Ali Khan ◽  
Musharaf Ahmed ◽  
Syeda Maryam Hussain

Fourteen cultivars of cucumber were screened for their resistance to the Southern root-knot nematode, Meloidogyne incognita (Kofoid and White) Chitwood in an in planta experiment. The pots were maintained in greenhouse with CRD for 50 days after inoculation. The cultivar DS92-05 induced significant mortality and was rated “moderately resistant (MR)”. This cultivar showed increase in plant growth parameters including vine length. The cultivars DS92-06, Laghman, Sultan and Desitype were moderately susceptible (MS). The cultivar Rehan and DS96-299 were rated susceptible (S) whereas DS97-299, Chaiya, Beitalpha, Alto, DS92-04 and Local were rated as highly susceptible (HS). DS92-05 is thus promising for sustainable agriculture, specially in those areas with high population density of Southern Root knot nematode.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 868e-869
Author(s):  
J.A. Thies

Thirteen sweetpotato (Ipomoea batatas) genotypes were characterized for resistance to Meloidogyne incognita, M. javanica, M. hapla, and M. arenaria races 1 and 2 in greenhouse tests. The following sweetpotato genotypes representing a range of reactions to M. incognita were evaluated: U.S. Plant Introduction (PI) 399163 (highly resistant = HR), Sumor (HR), Nemagold (HR), Excel (HR), Tinian (HR), Hernandez (resistant = R), Jewel (R), Regal (R), Porto Rico (intermediate = I), Centennial (susceptible = S), Georgia Jet (S), Sulfur (S), and Beauregard (S). Meloidogyne incognita was most pathogenic to sweetpotato of the four Meloidogyne spp. evaluated in these studies. The U.S. Plant Introduction (PI) 399163 and Sumor were resistant to M. incognita in all tests. Only two genotypes, Beauregard and Porto Rico, were susceptible to M. javanica. All genotypes evaluated were resistant to M. hapla, M. arenaria race 1, and M. arenaria race 2. Sumor, U.S. PI 399163, and Nemagold appear to provide the highest levels of resistance against the four Meloidogyne spp. used in these studies. Since M. incognita is the most commonly occurring root-knot nematode species in sweetpotato growing areas of the southern U.S. and is pathogenic to most of the commonly grown sweetpotato cultivars, efforts to develop resistant cultivars that have desirable horticultural characteristics for the U.S. market should be directed toward this root-knot nematode species.


2019 ◽  
Vol 18 (3) ◽  
pp. 45-52 ◽  
Author(s):  
Tariq Mukhtar ◽  
Muhammad Zameer Kayani

Root-knot nematodes have become a grave menace to the lucrative production of cucumber throughout the world. These nematodes are mainly controlled by applying nematicides, but their use is often associated with hazards. Alternatively, the use of nematode resistant cultivars is considered to be innocuous and economically feasible. For their fitness as nematode-suppressive crops, the reduction in growth and yield parameters of these cultivars must be assessed. As there is little documented data about the effects of Meloidogyne incognita on the damage of cucumber, therefore, in the present study, the effects of M. incognita were evaluated on growth and yield parameters of fifteen cucumber cultivars. M. incognita significantly negatively affected the growth and yield parameters of all the cucumber cultivars. Shoot and root lengths and shoot weights of all the cultivars were significantly reduced as a result of nematode infection. Maximum reductions in these parameters were recorded in highly susceptible cultivars followed by susceptible ones, while the reductions were minimal in resistant followed by moderately resistant cultivars. On the contrary, the infection by M. incognita resulted in an increase in root weights of all the cultivars. The increase was found to be the maximum in highly susceptible cultivars followed by susceptible and moderately susceptible cultivars. Likewise, the minimum increase was observed in the resistant cultivars followed by moderately resistant cultivars. Similarly, significant variations in yield parameters among fifteen cucumber cultivars were also recorded as a result of M. incognita infection. In the case of highly susceptible cultivars, the reductions in yield parameters were maximum, whereas the reductions in resistant and moderately resistant cultivars were found to be minimum. As cultivars Long Green, Marketmore, Pioneer-II, Dynasty and Summer Green experienced no significant damage compared to susceptible cucumber cultivars and therefore, they are approved for cultivation in nematode infested soils.


Plant Disease ◽  
2018 ◽  
Vol 102 (9) ◽  
pp. 1820-1827 ◽  
Author(s):  
Anthony P. Keinath ◽  
Paula A. Agudelo

Interspecific hybrid squash (Cucurbita maxima × C. moschata ‘Strong Tosa’) and bottle gourd (Lagenaria siceraria ‘Macis’) rootstocks are resistant to Fusarium oxysporum f. sp. niveum but susceptible to Meloidogyne incognita (Southern root-knot nematode). Coinfection of Early Prolific Straightneck summer squash (C. pepo) with root-knot nematode and F. oxysporum f. sp. niveum has been reported to increase susceptibility to Fusarium wilt. The objectives of this study were to determine whether such an interaction occurred between M. incognita and F. oxysporum f. sp. niveum races 1 and 2 on Strong Tosa, Macis, and watermelon cultivars Fascination (resistant to race 1) and Tri-X 313 (susceptible to both races). Hosts were inoculated in a greenhouse with one of four pathogen treatments: F. oxysporum f. sp. niveum, M. incognita, both pathogens, or neither pathogen. Galling was present on ≥10% of the root systems of 90% of the plants inoculated with M. incognita. Bottle gourd had less galling than interspecific hybrid squash. Plants not inoculated with F. oxysporum f. sp. niveum did not wilt. Four weeks after inoculation, incidence and severity of Fusarium wilt and recovery of F. oxysporum did not differ for any hosts inoculated with F. oxysporum f. sp. niveum alone and F. oxysporum f. sp. niveum plus M. incognita (host–treatment interactions not significant). In general, Early Prolific Straightneck grouped with the F. oxysporum f. sp. niveum-resistant rootstocks when inoculated with F. oxysporum f. sp. niveum race 2 and with the susceptible watermelon when inoculated with race 1, regardless of inoculation with M. incognita. Recovery of F. oxysporum from stems of inoculated watermelon was greater than recovery from the other three hosts, regardless of nematode inoculation. In conclusion, our experiments do not support the hypothesis that resistance to F. oxysporum f. sp. niveum in cucurbit rootstocks or resistant watermelon cultivars would be compromised when M. incognita infects the roots.


2006 ◽  
Vol 43 (3) ◽  
pp. 168-170 ◽  
Author(s):  
N. Sasanelli ◽  
T. D’Addabbo ◽  
M. Lišková

AbstractThe effect of Meloidogyne incognita race 1 at different population densities (0, 0.0625, 0.125, 0.25,... 256 eggs and juveniles/cm3 soil) on the growth of a rootstock (1103 Paulsen) and a cv. Italia of grapevine was studied in glasshouse experiment. One-year-old, self-rooted plants were transplanted into 1,200 cm3 plastic pots containing soil infested by M. incognita race 1 at different inoculum levels. Reproduction of M. incognita race 1 was significantly higher on cv. Italia than on the rootstock 1103 Paulsen. Tolerance limits (T) of 1.28 and 0.78 eggs and juveniles/cm3 soil were estimated respectively for 1103 Paulsen and Italia. Minimum relative plant growth of 0.55, 0.80 and 0.85, respectively for shoot length and node number increase and fresh top weight, were estimated for 1103 Paulsen; whereas values of 0.25, 0.50 and 0.60 were assessed for the cv. Italia. Nematode equilibrium density was 33.6 and 137.8 eggs and juveniles/cm3 soil, on 1103 Paulsen and Italia, respectively.


Sign in / Sign up

Export Citation Format

Share Document