Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane

2011 ◽  
Vol 65 (5) ◽  
Author(s):  
Ján Marták ◽  
Štefan Schlosser ◽  
Marek Blahušiak

AbstractTransport of butyric acid (BA) through a supported liquid membrane (SLM) containing phosphonium ionic liquid (IL) Cyphos IL-104 and dodecane occurs by two mechanisms. The first is related to the physical solubility of undissociated acid in dodecane in the form of a monomer or dimer and the second to the reactive extraction of acid by IL. Although the model of pertraction indicates that increasing the mean concentration of acid in the feed, c F,lmv, increases the participation of pertraction based on the physical solubility; in the tested range of c F,lmv from 0 kmol m−3 to 0.45 kmol m−3 it does not play an important role and at the highest c F,lmv value, less than 10 % of the overall BA transport were achieved. The presence of IL in SLM considerably increases the value of the overall mass transfer coefficient in pertraction at low BA concentrations. However, at c F,lmv > 0.4 kmol m−3 its values are similar for SLMs with and without IL. Compared to lactic acid, the pertraction of BA through the same SLM is about five times faster. Reactive transport of BA is connected with the back transport of water via reverse micelles decomposition and formation on the extraction and stripping interfaces.

2013 ◽  
Vol 67 (12) ◽  
Author(s):  
Marek Blahušiak ◽  
Ján Marták ◽  
Fernando Miranda ◽  
Štefan Schlosser ◽  
José Teixeira

AbstractSolvent formulation is important in the optimization of the mass-transfer through supported liquid membranes (SLM) in pertraction and membrane extraction. Oleyl alcohol (OA) is frequently used as the solvent or diluent in the extraction of carboxylic acids. A disadvantage of OA is its relatively high viscosity of 28.32 mPa s at 25°C. This can be decreased by the application of a less viscous OA diluent, e.g. dodecane. The relationship between the ratio of the distribution coefficient of butyric acid (BA), D F, and the viscosity of OA-dodecane solvents, µ, as extraction and transport characteristics, and the overall mass-transfer coefficient, K p, through SLMs was analyzed. Dependence of the D F/µ ratio on the OA concentration showed a maximum at the OA concentration of 15 mass % to 30 mass %. The OA concentration dependence of K p for SLMs exhibited also a maximum at about 30 mass % and 20 mass % of OA at the BA concentration driving force of 0.12 kmol m−3 and 0.3 kmol m−3, respectively. Shifting of the maximum in K p dependences towards lower OA concentrations by increasing the BA concentration driving force is in agreement with the D F/µ ratio dependence. Using pure OA as the solvent or diluent is not preferable and a mixture of a low viscosity diluent with the OA concentration below 40 mass % should be used. The presented results show the potential of the D F/µ ratio in the screening and formulation of solvents in extraction and SLM optimization.


2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Ján Marták ◽  
Štefan Schlosser

AbstractL/L equilibrium data of butyric acid (BA) in aqueous solutions contacted with the solvents containing ionic liquid (IL), trihexyl-(tetradecyl)phosphonium bis 2,4,4-trimethylpentylphosphinate (Cyphos IL-104), and a related model are presented. IL-104 and its solutions in dodecane were found to be effective solvents of BA. The values of the distribution coefficients of BA were higher than those for solvents with the widely used extractant trioctylamine, especially at low acid concentrations and were also several-fold higher than those of lactic acid (LA). IL extracted BA only in its undissociated form (BAH) at pH well below pK a of the acid. The loading of IL was independent of IL concentration and it achieved a value higher than four at saturation. Complexes with 1–5 molecules of BA per one IL molecule were supposed in the mass action model in which the reactive formation of complexes (BAH)p(IL)(H2O)2 was supposed. Up to 10 % of the total extracted BA was extracted physically by dodecane as a monomer and dimer, in the solvent. The water content in the organic phase steeply decreased with the BA concentration, which was caused by splitting water-IL reverse micelles due to the formation of the BAH/IL complexes.


1983 ◽  
Vol 22 (05) ◽  
pp. 246-250 ◽  
Author(s):  
M. Al-Hilli ◽  
H. M. A. Karim ◽  
M. H. S. Al-Hissoni ◽  
M. N. Jassim ◽  
N. H. Agha

Gelchromatography column scanning has been used to study the fractions of reduced hydrolyzed 99mTc, 99mTc-pertechnetate and 99mTc-chelate in a 99mTc-glucoheptonate (GH) preparation. A stable high labelling yield of 99mTc-GH complex in the radiopharmaceutical has been obtained with a concentration of 40-50 mg of glucoheptonic acid-calcium salt and not less than 0.45 mg of SnCl2 2 H2O at an optimal pH between 6.5 and 7.0. The stability of the complex has been found significantly affected when sodium hydroxide solution was used for the pH adjustment. However, an alternative procedure for final pH adjustment of the preparation has been investigated providing a stable complex for the usual period of time prior to the injection. The organ distribution and the blood clearance data of 99mTc-GH in rabbits were relatively similar to those reported earlier. The mean concentration of the radiopharmaceutical in both kidneys has been studied in normal subjects for one hour with a scintillation camera and the results were satisfactory.


1967 ◽  
Vol 55 (1) ◽  
pp. 91-96 ◽  
Author(s):  
Benno Runnebaum ◽  
Josef Zander

ABSTRACT Progesterone was determined and identified in human peripheral blood during the preovulatory period of the menstrual cycle, by combined isotope derivative and recrystallization analysis. The mean concentration of progesterone in 1.095 ml of plasma obtained 9 days before ovulation was 0.084 μg/100 ml. However, the mean concentration of progesterone in 1.122 ml of plasma obtained 4 days before ovulation was 0.279 μg/100 ml. These data demonstrate a source of progesterone secretion other than the corpus luteum. The higher plasma-progesterone concentration 4 days before ovulation may indicate progesterone secretion of the ripening Graafian follicle of the ovary.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1382
Author(s):  
Olga Martyna Koper-Lenkiewicz ◽  
Violetta Dymicka-Piekarska ◽  
Anna Justyna Milewska ◽  
Justyna Zińczuk ◽  
Joanna Kamińska

The aim of the study was the evaluation whether in primary colorectal cancer (CRC) patients (n = 55): age, sex, TNM classification results, WHO grade, tumor location (proximal colon, distal colon, rectum), tumor size, platelet count (PLT), mean platelet volume (MPV), mean platelet component (MCP), levels of carcinoembryonic antigen (CEA), cancer antigen (CA 19-9), as well as soluble lectin adhesion molecules (L-, E-, and P-selectins) may influence circulating inflammatory biomarkers: IL-6, CRP, and sCD40L. We found that CRP concentration evaluation in routine clinical practice may have an advantage as a prognostic biomarker in CRC patients, as this protein the most comprehensively reflects clinicopathological features of the tumor. Univariate linear regression analysis revealed that in CRC patients: (1) with an increase in PLT by 10 × 103/μL, the mean concentration of CRP increases by 3.4%; (2) with an increase in CA 19-9 of 1 U/mL, the mean concentration of CRP increases by 0.7%; (3) with the WHO 2 grade, the mean CRP concentration increases 3.631 times relative to the WHO 1 grade group; (4) with the WHO 3 grade, the mean CRP concentration increases by 4.916 times relative to the WHO 1 grade group; (5) with metastases (T1-4N+M+) the mean CRP concentration increases 4.183 times compared to non-metastatic patients (T1-4N0M0); (6) with a tumor located in the proximal colon, the mean concentration of CRP increases 2.175 times compared to a tumor located in the distal colon; (7) in patients with tumor size > 3 cm, the CRP concentration is about 2 times higher than in patients with tumor size ≤ 3 cm. In the multivariate linear regression model, the variables that influence the mean CRP value in CRC patients included: WHO grade and tumor localization. R2 for the created model equals 0.50, which indicates that this model explains 50% of the variance in the dependent variable. In CRC subjects: (1) with the WHO 2 grade, the mean CRP concentration rises 3.924 times relative to the WHO 1 grade; (2) with the WHO 3 grade, the mean CRP concentration increases 4.721 times in relation to the WHO 1 grade; (3) with a tumor located in the rectum, the mean CRP concentration rises 2.139 times compared to a tumor located in the distal colon; (4) with a tumor located in the proximal colon, the mean concentration of CRP increases 1.998 times compared to the tumor located in the distal colon; if other model parameters are fixed.


2021 ◽  
Author(s):  
Ján Marták ◽  
Tibor Liptaj ◽  
Milan Polakovič ◽  
Štefan Schlosser

Sign in / Sign up

Export Citation Format

Share Document