Zooplankton and environmental factors of a recovering eutrophic lake (Lysimachia Lake, Western Greece)

Biologia ◽  
2013 ◽  
Vol 68 (3) ◽  
Author(s):  
Ekaterini Chalkia ◽  
George Kehayias

AbstractThe present study investigates the zooplankton community dynamics and the abiotic environment in the eutrophic Lake Lysimachia (western Greece). The lake is considered to be recovering from eutrophication after the termination of an urban sewage inflow in 2000, and its waters are replenished constantly from the nearby oligotrophic Lake Trichonis. The results show that, although a decrease in nutrient concentrations was observed compared to the past, the lake still has eutrophic characteristics. This was reflected in the zooplankton community which is typical of those found in eutrophic lakes where rotifers prevail. Similarities among this lake and other nearby lakes were found considering the zooplankton community composition and seasonal variation. However, Lake Lysimachia is inhabited also by a number of different and even unique species (e.g., Moina micrura), suggesting that this ecosystem may be an important biodiversity refuge. Most of the zooplankton species were correlated with water temperature and, to a lesser extent, eutrophication key-water quality variables. Although there are few available data on the zooplankton of the lake, the abundance and composition of the community presenting characteristics indicative of intermediate trophic conditions and suggesting that the lake is probably under a kind of “biological” recovery.

2013 ◽  
Vol 14 (3) ◽  
pp. 32 ◽  
Author(s):  
E. CHALKIA ◽  
G. KEHAYIAS

A one year investigation of the zooplankton community composition and dynamics in Lake Οzeros (western Greece) revealed 25 invertebrate species (16 rotifers, three copepods, five cladocerans and one mollusc larva). The mean zooplankton abundance fluctuated between 59.4 to 818 ind l-1, having maximum values in spring. The species composition and seasonal variation do not differentiate Lake Ozeros from the nearby lakes. The presence of the dominant calanoid copepod Eudiaptomus drieschi and some of the rotifer species recorded are characteristics of either oligo- or eutrophic lakes. According to the trophic state index (TSI) Lake Ozeros is a meso-eutrophic ecosystem, in which the eutrophic character was possibly the result of the high charge with phosphorus (being raised by 28.9 % in comparison to previous decades), which came into the lake via the surrounding agricultural cultivations and mainly the pig-raising activities. In contrast, the concentrations of ΝΟ3, ΝΟ2 and NH4 have considerably decreased possibly due to the termination of the tobacco cultivations around the lake during the last years. The novel information on the abiotic and especially the biotic elements of Lake Ozeros provided by the present study can contribute to the effective management of this aquatic ecosystem in the future.


<i>Abstract</i>.—The northeast U.S. Continental Shelf large marine ecosystem (NES LME) has supported important commercial fisheries for several centuries. The NES LME has experienced structural change due to both intensive exploitation and physical forcing in relation to broader climate impacts in the North Atlantic over the past several decades. Here, we examine the combined effects of anthropogenic and environmental factors on the state of the NES LME using a driverpressure- state-impact-response framework to structure our assessment of patterns of change in this system. We partitioned both drivers and pressures according to natural and anthropogenic sources. Ecological state variables encompassed a broad spectrum of trophic levels. Impact metrics are based on economic trends in the fisheries. To represent regulatory responses, we trace the history of management actions in this region over the past five decades. The critical importance of changes in temperature and water column stratification in ecosystem change, in relation to bottom-up forcing, is identified using canonical proredundancy analysis. Analysis of anthropogenic pressures indicate a clear effect of fishing pressure, and removals due to fishing, in the dynamics of fish communities in the region, highlighting an important top-down control mechanism. Analysis of zooplankton community dynamics confirms previous indications of a regime-like change in species composition during the 1990s. Observed changes in fish community dynamics appears to be most clearly related to large-scale switches from a demersal to a pelagic fish dominated system and to changes within the demersal fish community itself.


2010 ◽  
Vol 5 (2) ◽  
pp. 240-255 ◽  
Author(s):  
Robert Czerniawski ◽  
Józef Domagała

AbstractWe examined the quantitative and qualitative zooplankton community structure in two small rivers flowing out from lakes differing in trophic conditions. Within each river, three sites were chosen for the collection of drifted zooplankton: one at the outflow, and two at distances of 0.2 km and 1 km from the outflow. The most significant difference in zooplankton community between the outflow and the lower course of the river occurred in the first section directly after the outflow. These differences in the zooplankton community were driven largely by crustaceans, which declined faster in the river flowing out from the mesotrophic lake. Physical parameters mainly impacted the zooplankton community found in the river flowing from the mesotrophic lake; however, chemical parameters also had an impact in the river discharging from the strongly eutrophic lake.


2005 ◽  
Vol 40 (4) ◽  
pp. 418-430 ◽  
Author(s):  
Markus L. Heinrichs ◽  
Brian F. Cumming ◽  
Kathleen R. Laird ◽  
J. Sanford Hart

Abstract Diatom and chironomid analysis of sediments encompassing the past 400 years from Bouchie Lake, British Columbia, suggests two distinct periods of limnological conditions. Prior to 1950 AD, Fragilaria construens and F. pinnata are the most common diatom species, and Chironomus, Procladius and Tanytarsini dominate the chironomid record. Moderately low nutrient concentrations consistent with oligo-mesotrophic lakes are inferred. From 1950, the diatom assemblage is dominated by Stephanodiscus parvus, a eutrophic indicator, whereas the chironomid communities show a relative increase in littoral taxa coincident with lower head capsule abundance. Higher nutrient levels, specifically total phosphorus, which increased from 8 µg L-1 prior to 1950 to 20 µg L-1 currently, are coincident with midge communities indicative of lower oxygen concentrations. Observed biotic changes and nutrient levels inferred from the sediment core correspond to historical land-use changes.


1990 ◽  
Vol 22 (5) ◽  
pp. 137-144 ◽  
Author(s):  
M. T. Dokulil ◽  
G. A. Janauer

The system “Neue Donau” functions as a control system for high waters of the river Danube and is an important recreational area for many people. Water quality and trophic status of the water body is thereforeof prime importance. The high nutrient concentrations of the river Danube (P-tot 238±41µg/l, N-tot 2.53±0.78 mg/l) reach the system via groundwater seepage. Present conditions in the basin of Neue Donau are,as a result of this nutrient in-flux,eutrophic to hypertrophic. Average values during the summer period have declined from 366 µg/l total phosphorus to 78 µg/l, and from 86 µg/l chlorophyll-a tol7µg/l between the years 1985 and 1988. However, a dam which is planned in the river at Vienna will permanently raise the water level of the river thus increasing the the groundwater flow in the direction to the Neue Donau and therefore the nutrient input which will enhance trophic conditions in the impoundment. Since macrophytes play an important role in one part of the system macrophyte management together with measures along the river are some of the suggested strategies to keep the system Neue Donau at acceptable trophic conditions and good water quality.


1953 ◽  
Vol 10 (5) ◽  
pp. 224-237 ◽  
Author(s):  
D. S. Rawson

Plankton sampling has been a part of the program in a number of investigations of lakes in western Canada during the past 20 years. The techniques chosen for this work are discussed and criticized. The resulting data on average standing crop of net plankton are summarized and considered in relation to the kinds of lakes represented. The standing crop in 20 lakes shows an inverse relation to mean depth which is interpreted as indicating that, in most of these lakes, the trophic condition is greatly influenced by morphometry. Deviations from this relation appear to be explained by the secondary effects of climate and edaphic situation.The difference in quantity between the standing crops of net plankton in oligotrophic and eutrophic lakes is not large, and, of course, these lake types intergrade. This lack of sharp differentiation is further obscured by rapid and extensive seasonal fluctuation in amounts of plankton and by the difficulties inherent in present methods of sampling. These circumstances render measurements of standing crop difficult and of only moderate utility in suggesting the trophic type or the possible productivity of a lake.


2005 ◽  
Vol 71 (10) ◽  
pp. 5935-5942 ◽  
Author(s):  
Marie Lefranc ◽  
Aurélie Thénot ◽  
Cécile Lepère ◽  
Didier Debroas

ABSTRACT Small eukaryotes, cells with a diameter of less than 5 μm, are fundamental components of lacustrine planktonic systems. In this study, small-eukaryote diversity was determined by sequencing cloned 18S rRNA genes in three libraries from lakes of differing trophic status in the Massif Central, France: the oligotrophic Lake Godivelle, the oligomesotrophic Lake Pavin, and the eutrophic Lake Aydat. This analysis shows that the least diversified library was in the eutrophic lake (12 operational taxonomic units [OTUs]) and the most diversified was in the oligomesotrophic lake (26 OTUs). Certain groups were present in at least two ecosystems, while the others were specific to one lake on the sampling date. Cryptophyta, Chrysophyceae, and the strictly heterotrophic eukaryotes, Ciliophora and fungi, were identified in the three libraries. Among the small eukaryotes found only in two lakes, Choanoflagellida and environmental sequences (LKM11) were not detected in the eutrophic system whereas Cercozoa were confined to the oligomesotrophic and eutrophic lakes. Three OTUs, linked to the Perkinsozoa, were detected only in the Aydat library, where they represented 60% of the clones of the library. Chlorophyta and Haptophyta lineages were represented by a single clone and were present only in Godivelle and Pavin, respectively. Of the 127 clones studied, classical pigmented organisms (autotrophs and mixotrophs) represented only a low proportion regardless of the library's origin. This study shows that the small-eukaryote community composition may differ as a function of trophic status; certain lineages could be detected only in a single ecosystem.


2011 ◽  
Vol 101 (1-2) ◽  
pp. 75-84 ◽  
Author(s):  
Juliana D Dias ◽  
Érica M Takahashi ◽  
Natália F Santana ◽  
Cláudia C Bonecker

We investigated the impact of fish cage culture on the zooplankton community structure in a tropical reservoir. We hypothesized that community abundance is greater near cages and increases over time due to the increase in food availability. Samplings were performed near, upstream and downstream from net cages, and before and after net cage installation. The abundance of zooplankton increased 15 days after the experiment was set up, followed by a reduction and finally increased. Rotifer abundance showed significant differences among sites (p<0.05) and sampling periods (p<0.001). Significant differences were also observed in total zooplankton and cladoceran abundance (p<0.001). The spatial and temporal variation of the physical and chemical variables were indirectly correlated with the structure and dynamic of the zooplankton community, as they indicated the primary production in the environment. Our hypothesis was rejected, since the zooplankton was abundant at the reference site. Only rotifers showed higher abundance near cages, due to the influence of food availability. Community dynamics during the experiment was also correlated to food availability. Our results suggest an impact of fish farming on the zooplankton community.


2016 ◽  
Vol 76 (s1) ◽  
Author(s):  
Mariano Bresciani ◽  
Claudia Giardino ◽  
Rosaria Lauceri ◽  
Erica Matta ◽  
Ilaria Cazzaniga ◽  
...  

Cyanobacterial blooms occur in many parts of the world as a result of entirely natural causes or human activity. Due to their negative effects on water resources, efforts are made to monitor cyanobacteria dynamics. This study discusses the contribution of remote sensing methods for mapping cyanobacterial blooms in lakes in northern Italy. Semi-empirical approaches were used to flag scum and cyanobacteria and spectral inversion of bio-optical models was adopted to retrieve chlorophyll-a (Chl-a) concentrations. Landsat-8 OLI data provided us both the spatial distribution of Chl-a concentrations in a small eutrophic lake and the patchy distribution of scum in Lake Como. ENVISAT MERIS time series collected from 2003 to 2011 enabled the identification of dates when cyanobacterial blooms affected water quality in three small meso-eutrophic lakes in the same region. On average, algal blooms occurred in the three lakes for about 5 days a year, typically in late summer and early autumn. A suite of hyperspectral sensors on air- and space-borne platforms was used to map Chl-a concentrations in the productive waters of the Mantua lakes, finding values in the range of 20 to 100 mgm-3. The present findings were obtained by applying state of the art of methods applied to remote sensing data. Further research will focus on improving the accuracy of cyanobacteria mapping and adapting the algorithms to the new-generation of satellite sensors.


Sign in / Sign up

Export Citation Format

Share Document