scholarly journals Study of structures and properties of ZnO-Sb2O3-P2O5-Na2O glasses

2014 ◽  
Vol 32 (3) ◽  
pp. 414-418 ◽  
Author(s):  
Yajun Qi ◽  
Zhiqiang Wang ◽  
Shangru Zhai ◽  
Shuwen Jiang ◽  
Hai Lin

AbstractThe influence of ZnO substitution by 0–12 wt.% Na2O on the properties of ZnO-Sb2O3-P2O5-Na2O glasses has been investigated. The structure and properties of the glasses with the composition of (13.86-x)ZnO-57.93Sb2O3-28.21P2O5−x Na2O (x = 0–12 wt.%) were characterized by infrared spectra (IR), X-ray diffraction and differential thermal analysis (DTA). The results of IR indicated an increase in the intensity of symmetric vibrations of P-O-P bond, which was confirmed by the improvement of water durability with the increasing amount of Na2O in the range of 0–10 wt.%. Substitution of 10 wt.% Na2O led to the weight loss of the glass to 5.93 mg/cm−2 after immersion in deionized water at 50 °C for 24 h. The results of XRD showed that the ability of crystallization decreased, indicating the good thermal stability of the glass. The glass containing 8 wt.% Na2O had the best properties in every respect and might be an alternative to lead based glasses for the applications, providing further composition improvement.

2021 ◽  
Vol 875 ◽  
pp. 116-120
Author(s):  
Muhammad Alamgir ◽  
Faizan Ali Ghauri ◽  
Waheed Qamar Khan ◽  
Sajawal Rasheed ◽  
Muhammad Sarfraz Nawaz ◽  
...  

In this study, the effect of SBR concentration (10 Phr, 20 Phr & 30 Phr ) on the thermal behavior of EPDM/SBR blends was studied. Thermogravimetric analysis (TGA) was used to check weight loss of samples as function of temperature by heating upto 600°C. X-ray diffraction (XRD) was performed to determine quality and % crystallinity of the elastomer blends. It was seen that % crystallinity improved with an increase in the content of SBR in EPDM/SBR blends. TGA revealed that the thermal stability of EPDM/SBR blends has improved by 17% than neat EPDM. Carbon nano-coatings produced by sputtering have no beneficial influence on thermal behaviour of elastomers.


2021 ◽  
Author(s):  
Xinru Hu ◽  
Jilin Wang ◽  
Jian He ◽  
Guoyuan Zheng ◽  
Disheng Yao ◽  
...  

Abstract Two kinds of novel organic-inorganic bismuth-halide hybrid monocrystalline compounds (C6H5CH2NH3)2BiCl5 and (C6H5CH2NH3)BiI4 were synthesized and characterized. The crystal structure, intermolecular interaction, morphology, chemical groups and bonds, optical and thermal stability of the samples were systematically investigated through single crystal X-ray diffraction, Hirshfeld surface analysis, SEM, FTIR, TG and UV-vis diffuse reflectance spectra. The results indicated that (C6H5CH2NH3)2BiCl5 and (C6H5CH2NH3)BiI4 crystals displayed a monoclinic system with the space group P21/c and P21/n at room temperature, respectively. These materials showed strong absorption in the ultraviolet and visible light regions, resulting in very low Eg, which could be continuously adjustable from 1.67 eV to 3.21 eV by changing the halogen ratio. In addition, these hybrid materials also exhibited good thermal stability. The decomposition temperature of (C6H5CH2NH3)2BiCl5 and (C6H5CH2NH3)BiI4 were 260℃ and 300℃ respectively. Therefore, these organic-inorganic bismuth-halide hybrid compounds have excellent development potential in the field of solar cell research.


1986 ◽  
Vol 1 (3) ◽  
pp. 415-419 ◽  
Author(s):  
R.A. Dunlap ◽  
K. Dini

The structure and thermal stability of rapidly solidified Al-Cr-Si, Al-Mn-Si, Al-Fe-Si, Al-Co-Si, and Al-Ni-Si alloys have been investigated using x-ray diffraction and thermal analysis measurements. Each series of alloys shows a region of stoichiometry that yields icosahedral symmetry and a region that yields an amorphous phase. Thermal and structural properties of these alloys are reported as a function of stoichiometry and quench rate.


2012 ◽  
Vol 554-556 ◽  
pp. 227-230
Author(s):  
Li Ying Zhang ◽  
Xiao Jing Zhao ◽  
Ping Chen ◽  
Sheng Di Fan

Five different multifunctional nitro octaphenyl silsesquioxane (NPS) were Synthesised and reduction was carried out to obtain amino octaphenyl silsesquioxane(APS). These compounds were characterized with elementary analysis, fourier transform infrared(FTIR), nuclear magnetic resonance (NMR, 29Si), wide-angle X-ray diffraction(XRD) and thermogravimetry (TG). Experiental results showed that the longer the nitration time, the more nitro connected to the OPS, but not positively, nitro number remained unchanged after five hours. NPS has good thermal stability than corresponding APS under 450°C, and the thermal stability of APS are decrease with the increase of amino number.


1972 ◽  
Vol 50 (23) ◽  
pp. 3872-3875 ◽  
Author(s):  
Kim Vo Van ◽  
Fathi Habashi

Anhydrous CU2SO4 was prepared and its X-ray diffraction pattern was established. Differential thermal analysis, thermogravimetric analysis, and X-ray diffraction methods were used to study the effect of heating in different atmospheres. The formation of CU2SO4 as an intermediate in chemical processes has been discussed.


2015 ◽  
Vol 69 (10) ◽  
Author(s):  
Ferooze Ahmad Rafiqi ◽  
Kowsar Majid

AbstractThis paper involves the preparation of polythiophene (PTP) and its composite by the oxidative polymerisation method by using ferric chloride as an oxidant and thiophene monomer. The gadolinium( III) complex obtained by the refluxing technique was used as dopant in the PTP matrix. On the basis of the spectroscopic characterisation, seven-coordinate geometry is proposed for the complex. Conductance measurement confirms the non-selectrolyte nature of complex. The PTP and its composite were subjected to FTIR, X-ray diffraction and scanning electron microscope techniques. The powder X-ray diffraction pattern showed the high crystalline nature of the complex which in turn developed a good degree of crystallinity in the PTP composite. The average particle size was calculated as 4.655 ˚A and 3.737 ˚A for the dopant and PTP composite, respectively, by using Debye Scherrer’s equation. Thermal analysis was performed by thermogravimetric (TG) analysis, differential thermal analysis (DTA) and differential scanning calorimetry (DSC) techniques. The TG, DTA and DSC results were well-correlated. The thermal analysis revealed the high thermal stability of the dopant which in turn improved the thermal stability of the PTP composite, revealing the potential of the composite for high temperature applications.


1998 ◽  
Vol 514 ◽  
Author(s):  
M. F. Wu ◽  
A. Vantomne ◽  
S. Hogg ◽  
H. Pattyn ◽  
G. Langouche ◽  
...  

ABSTRACTThe Nd-disilicide, which exists only in a tetragonal or an orthorhombic structure, cannot be grown epitaxially on a Si(111) substrate. However, by adding Y and using channeled ion beam synthesis, hexagonal Nd0.32Y0.68Si1.7 epilayers with lattice constant of aepi = 0.3915 nm and cepi = 0.4152 nm and with good crystalline quality (χmin of Nd and Y is 3.5% and 4.3 % respectively) are formed in a Si(111) substrate. This shows that the addition of Y to the Nd-Si system forces the latter into a hexagonal structure. The epilayer is stable up to 950 °C; annealing at 1000 °C results in partial transformation into other phases. The formation, the structure and the thermal stability of this ternary silicide have been studied using Rutherford backscattering/channeling, x-ray diffraction and transmission electron microscopy.


2005 ◽  
Vol 60 (5) ◽  
pp. 505-510 ◽  
Author(s):  
Tong-Lai Zhang ◽  
Jiang-Chuang Song ◽  
Jian-Guo Zhang ◽  
Gui-Xia Ma ◽  
Kai-Bei Yu

Cobalt(II) and zinc(II) complexes of ethyl carbazate (ECZ), [Co(ECZ)3](NO3)2 and [Zn(ECZ)3] (NO3)2, were synthesized. Single crystals of these two compounds were grown from aqueous solutions using a slow evaporation method. Their structures have been determined by X-ray diffraction analysis. Both of them are monoclinic with space group P21/n. The complexes are further characterized by element analysis and IR measurements. Their thermal stabilities are studied by using TG-DTG, DSC techniques. When heated to 350 °C, only metal oxide was left for both complexes.


2005 ◽  
Vol 20 (10) ◽  
pp. 2682-2690 ◽  
Author(s):  
Yufang Zhu ◽  
Weihua Shen ◽  
Xiaoping Dong ◽  
Jianlin Shi

A stable mesoporous multilamellar silica vesicle (MSV) was developed with a gallery pore size of about 14.0 nm. A simulative enzyme, hemoglobin (Hb), was immobilized on this newly developed MSV and a conventional mesoporous silica material SBA-15. The structures and the immobilization of Hb on the mesoporous supports were characterized with x-ray diffraction, transmission electron microscopy, N2 adsorption-desorption isotherms, Fourier transform infrared, ultraviolet-visible spectroscopy, and so forth. MSV is a promising support for immobilizing Hb due to its large pore size and high Hb immobilization capacity (up to 522 mg/g) compared to SBA-15 (236 mg/g). Less than 5% Hb was leached from Hb/MSV at pH 6.0. The activity study indicated that the immobilized Hb retained most peroxidase activity compared to free Hb. Thermal stability of the immobilized Hb was improved by the proctetive environment of MSV and SBA-15. Such an Hb-mesoporous support with high Hb immobilization capacity, high activity, and enhanced thermal stability will be attractive for practical applications.


Sign in / Sign up

Export Citation Format

Share Document