scholarly journals Diagnosis of Erodible Locations in River Bends Using a Combined Method (GIS, RS and the CCHE2D Model) (Case Study: The Karkheh River in Iran)

2018 ◽  
Vol 26 (4) ◽  
pp. 78-88 ◽  
Author(s):  
Arash Adib ◽  
Hamid Reza Gafouri ◽  
Ali Liaghat

Abstract In this research, a combined method was developed to determine the erodibility of bends in the Karkheh River. For this purpose, a 40 km reach of the Karkheh River downstream of the Karkheh Dam was considered. The value of the shear stress was the calculated using the CCHE2D model. The results from the model show that in 1996 (before construction of the Karkheh dam), the length of the erodible reach was 1314 m; in 2011 (after construction of the Karkheh dam), this length was reduced to 840 m. Furthermore, the model illustrates that the location of the maximum shear stress is a function of the relative curvature (R/W) in the bends. For small values of the R/W (less than 1.5), the maximum shear stress occurs on the convex bank of a river bend. By increasing the R/W, the location of the maximum shear stress transfers to the concave bank of the river bend. Also, this location is displaced towards downstream by increasing the R/W.

Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 884
Author(s):  
Rawaa Shaheed ◽  
Abdolmajid Mohammadian ◽  
Xiaohui Yan

River bends are one of the common elements in most natural rivers, and secondary flow is one of the most important flow features in the bends. The secondary flow is perpendicular to the main flow and has a helical path moving towards the outer bank at the upper part of the river cross-section, and towards the inner bank at the lower part of the river cross-section. The secondary flow causes a redistribution in the main flow. Accordingly, this redistribution and sediment transport by the secondary flow may lead to the formation of a typical pattern of river bend profile. It is important to study and understand the flow pattern in order to predict the profile and the position of the bend in the river. However, there are a lack of comprehensive reviews on the advances in numerical modeling of bend secondary flow in the literature. Therefore, this study comprehensively reviews the fundamentals of secondary flow, the governing equations and boundary conditions for numerical simulations, and previous numerical studies on river bend flows. Most importantly, it reviews various numerical simulation strategies and performance of various turbulence models in simulating the flow in river bends and concludes that the main problem is finding the appropriate model for each case of turbulent flow. The present review summarizes the recent advances in numerical modeling of secondary flow and points out the key challenges, which can provide useful information for future studies.


Author(s):  
Masakazu Hashimoto ◽  
Kenji Kawaike ◽  
Tomonori Deguchi ◽  
Shammi Haque ◽  
Arpan Paul ◽  
...  

Author(s):  
Jianhang Chen ◽  
Hongbao Zhao ◽  
Fulian He ◽  
Junwen Zhang ◽  
Kangming Tao

AbstractNumerical simulation is a useful tool in investigating the loading performance of rock bolts. The cable structural elements (cableSELs) in FLAC3D are commonly adopted to simulate rock bolts to solve geotechnical issues. In this study, the bonding performance of the interface between the rock bolt and the grout material was simulated with a two-stage shearing coupling model. Furthermore, the FISH language was used to incorporate this two-stage shear coupling model into FLAC3D to modify the current cableSELs. Comparison was performed between numerical and experimental results to confirm that the numerical approach can properly simulate the loading performance of rock bolts. Based on the modified cableSELs, the influence of the bolt diameter on the performance of rock bolts and the shear stress propagation along the interface between the bolt and the grout were studied. The simulation results indicated that the load transfer capacity of rock bolts rose with the rock bolt diameter apparently. With the bolt diameter increasing, the performance of the rock bolting system was likely to change from the ductile behaviour to the brittle behaviour. Moreover, after the rock bolt was loaded, the position where the maximum shear stress occurred was variable. Specifically, with the continuous loading, it shifted from the rock bolt loaded end to the other end.


Author(s):  
Basant Singh Sikarwar ◽  
K. Muralidhar ◽  
Sameer Khandekar

Clusters of liquid drops growing and moving on physically or chemically textured lyophobic surfaces are encountered in drop-wise mode of vapor condensation. As opposed to film-wise condensation, drops permit a large heat transfer coefficient and are hence attractive. However, the temporal sustainability of drop formation on a surface is a challenging task, primarily because the sliding drops eventually leach away the lyophobicity promoter layer. Assuming that there is no chemical reaction between the promoter and the condensing liquid, the wall shear stress (viscous resistance) is the prime parameter for controlling physical leaching. The dynamic shape of individual droplets, as they form and roll/slide on such surfaces, determines the effective shear interaction at the wall. Given a shear stress distribution of an individual droplet, the net effect of droplet ensemble can be determined using the time averaged population density during condensation. In this paper, we solve the Navier-Stokes and the energy equation in three-dimensions on an unstructured tetrahedral grid representing the computational domain corresponding to an isolated pendant droplet sliding on a lyophobic substrate. We correlate the droplet Reynolds number (Re = 10–500, based on droplet hydraulic diameter), contact angle and shape of droplet with wall shear stress and heat transfer coefficient. The simulations presented here are for Prandtl Number (Pr) = 5.8. We see that, both Poiseuille number (Po) and Nusselt number (Nu), increase with increasing the droplet Reynolds number. The maximum shear stress as well as heat transfer occurs at the droplet corners. For a given droplet volume, increasing contact angle decreases the transport coefficients.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Yong Wang ◽  
Aixiang Wu ◽  
Lianfu Zhang ◽  
Hongjiang Wang ◽  
Fei Jin

Sedimentation of filling materials could cause pipe blocking accident in mines. However, few quantitative characterization studies have investigated the sedimentation characteristics of filling materials. In this study, the sedimentation property of iron tailings with a cement-sand ratio of 1 : 4 and mass concentration of 73%∼82% was investigated based on rheology measurements. Results showed that shear stress increased as shear rate rose from 0 s−1to 120 s−1. The shear stress increased as the filling material concentration increased as well. However, when the shear rate was reversed from 120 s−1to 0 s−1, the shear stress presented an increase-constant-decrease change pattern as the mass concentration increases in the rheological curve. Accordingly, the sedimentation performance of iron tailings filling material was divided into three types: intense sedimentation (the ascending rheological curve) in the mass concentration range of 73%∼76%, slight sedimentation (the constant rheological curve) in the mass concentration range of 77%∼79%, and almost no sedimentation (the descending rheological curve) in the mass concentration range of 80%∼82%. The associated mechanism involving slurry mass concentration-rheological curves-sedimentation performance was illustrated. A correlation between the pipeline rheology and filling material sedimentation performance was established, which provides a practical guide to avoid pipeline blocking while transporting the filling material.


Sign in / Sign up

Export Citation Format

Share Document