scholarly journals Influence of Operating Parameters on Running-in Wear of EN-31 Steel

2016 ◽  
Vol 13 (1) ◽  
pp. 1-2
Author(s):  
M. Hanief ◽  
M. F. Wani

Abstract In this paper, effect of operating parameters (temperature, surface roughness and load) was investigated to determine the influence of each parameter on the wear rate. A mathematical model was developed to establish a functional relationship between the running-in wear rate and the operating parameters. The proposed model being non-linear, it was linearized by logarithmic transformation and the optimal values of model parameters were obtained by least square method. It was found that the surface roughness has significant effect on wear rate followed by load and temperature. The adequacy of the model was estimated by statistical methods (coefficient of determination (R2) and mean absolute percentage error (MAPE)) .

Author(s):  
Yupaporn AREEPONG ◽  
Rapin SUNTHORNWAT

Since December 2019, the world has been facing an emerging infectious disease named coronavirus disease 2019. Thailand has also been affected by the spread of the coronavirus. The Thai government have announced policies to protect people, based on the emergency decree and curfew law for flattening the curve of the number of the coronavirus disease 2019 cases without vaccination in Thailand. This research estimated of the number of total infectious cases of coronavirus disease 2019 in Thailand. Two growth curves, including an exponential growth curve under a non-flattened curve policy (herd immunity policy without vaccination), and a logistic growth curve under a flattened curve policy without vaccination, were selected to estimate the parameters of the curves by the least square method to represent the number of the total infectious cases in Thailand. Moreover, the maximum infectious cases of coronavirus disease 2019 and the speed of spreading for coronavirus disease 2019 in Thailand were also explored. Based on the number of the total infectious cases of coronavirus disease 2019 in Thailand, the findings demonstrated that the coefficient of determination of the logistic growth curve was greater than the exponential growth curve and the root means squared percentage error of the logistic growth curve was less than the exponential growth curve. These results suggest that the logistic growth curve is suitable for describing the number of total infectious cases of coronavirus disease 2019 in Thailand under the fattened curve policy. GRAPHICAL ABSTRACT


Author(s):  
Denis Ndanguza ◽  
Jean Pierre Muhirwa ◽  
Anatholie Uwimana

Predator prey interactions are important in ecology and most of time in the analysis, the two antagonists are assumed to be in a closed system. The aim of this study is to model the unclosed predator-prey system. The model is built and simulated data are computed by adding noise on deterministic solution. Therefore, model parameters are estimated using least square method. We compute the two critical points and the stability analysis is carried out and results show that the population is stable at one critical point and unstable at (0,0). The model fits the synthetic data with coefficient of determination R2 = 0.9693 equivalent to 96.93%. Using the residual analysis to test the validity of the model, it is shown that there is no pattern between residuals. To strengthen the validity of the model, the Markov Chain Monte Carlo algorithms are used as an alternative method in parameters estimation. Diagnostics prove the chains’ convergence which is the sign of an accurate model. As conclusion, the model is accurate and it can be applied to real data.Keywords: predator-prey, spatial distribution, parameters, Metropolis-Hastings algorithm, model diagnostic, stability analysis


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
M. Hanief ◽  
M. F. Wani

Electrical analogy has been used extensively in modeling various mechanical systems such as thermal, hydraulic, and other dynamic systems. However, wear modeling of a tribosystem using electrical analogy has not been reported so far. In this paper, an equivalent electrical analogous system is proposed to represent the wear process. An analogous circuit is developed by mapping the wear process parameters to that of the electrical parameters. The circuit, thus, developed is solved by conventional electrical circuit theory. The material properties and operating conditions are taken into account by model parameters. Accordingly, a model equation in terms of model parameters is developed to represent the wear rate. It is also demonstrated how this methodology can be used to take various system parameters into account by incorporating the equivalent resistance of the parameters. The nonlinear model parameters are evaluated by Gauss–Newton (GN) algorithm. The proposed model is validated by using experimental data. A comparison of the proposed model with the experimental results, based on statistical methods: coefficient of determination (R2), mean-square-error (MSE) and mean absolute percentage error (MAPE), indicates that the model is competent to predict the wear with a high degree of accuracy.


Author(s):  
M. Hanief ◽  
Shafi M. Charoo

The wear process significantly influences machine parts during their useful life. The wear process is complex, and therefore, it is very difficult to develop a comprehensive model involving all the operating parameters. In the present study, wear rate is measured during the wear process at different operating parameters such as force (load), sliding distance, and velocity. Power law and Artificial neural network (ANN) approaches are used to model the wear rate of Al7075 alloy. Power law and neural network-based models are compared using statistical methods with a coefficient of determination (R2), mean absolute percentage error (MAPE), and means square error (MSE). It is seen that the proposed models are competent to predict the wear rate of Al7075 alloy. The ANN model estimates the wear rate with high accuracy compared to that of the power law model. The models developed for wear rate were found to be consistent with the experimental data. ANOVA analysis revealed that the load has a significant effect on the wear rate than the sliding speed and sliding distance.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Boluwaji M. Olomiyesan ◽  
Onyedi D. Oyedum

In this study, the performance of three global solar radiation models and the accuracy of global solar radiation data derived from three sources were compared. Twenty-two years (1984–2005) of surface meteorological data consisting of monthly mean daily sunshine duration, minimum and maximum temperatures, and global solar radiation collected from the Nigerian Meteorological (NIMET) Agency, Oshodi, Lagos, and the National Aeronautics Space Agency (NASA) for three locations in North-Western region of Nigeria were used. A new model incorporating Garcia model into Angstrom-Prescott model was proposed for estimating global radiation in Nigeria. The performances of the models used were determined by using mean bias error (MBE), mean percentage error (MPE), root mean square error (RMSE), and coefficient of determination (R2). Based on the statistical error indices, the proposed model was found to have the best accuracy with the least RMSE values (0.376 for Sokoto, 0.463 for Kaduna, and 0.449 for Kano) and highest coefficient of determination, R2 values of 0.922, 0.938, and 0.961 for Sokoto, Kano, and Kaduna, respectively. Also, the comparative study result indicates that the estimated global radiation from the proposed model has a better error range and fits the ground measured data better than the satellite-derived data.


Author(s):  
Kuo Liu ◽  
Haibo Liu ◽  
Te Li ◽  
Yongqing Wang ◽  
Mingjia Sun ◽  
...  

The conception of the comprehensive thermal error of servo axes is given. Thermal characteristics of a preloaded ball screw on a gantry milling machine is investigated, and the error and temperature data are obtained. The comprehensive thermal error is divided into two parts: thermal expansion error ((TEE) in the stroke range) and thermal drift error ((TDE) of origin). The thermal mechanism and thermal error variation of preloaded ball screw are expounded. Based on the generation, conduction, and convection theory of heat, the thermal field models of screw caused by friction of screw-nut pairs and bearing blocks are derived. The prediction for TEE is presented based on thermal fields of multiheat sources. Besides, the factors influencing TDE are analyzed, and the model of TDE is established based on the least square method. The predicted thermal field of the screw is analyzed. The simulation and experimental results indicate that high accuracy stability can be obtained using the proposed model. Moreover, high accuracy stability can still be achieved even if the moving state of servo axis changes randomly, the screw is preloaded, and the thermal deformation process is complex. Strong robustness of the model is verified.


2020 ◽  
Vol 9 (3) ◽  
pp. 674 ◽  
Author(s):  
Mohammed A. A. Al-qaness ◽  
Ahmed A. Ewees ◽  
Hong Fan ◽  
Mohamed Abd El Aziz

In December 2019, a novel coronavirus, called COVID-19, was discovered in Wuhan, China, and has spread to different cities in China as well as to 24 other countries. The number of confirmed cases is increasing daily and reached 34,598 on 8 February 2020. In the current study, we present a new forecasting model to estimate and forecast the number of confirmed cases of COVID-19 in the upcoming ten days based on the previously confirmed cases recorded in China. The proposed model is an improved adaptive neuro-fuzzy inference system (ANFIS) using an enhanced flower pollination algorithm (FPA) by using the salp swarm algorithm (SSA). In general, SSA is employed to improve FPA to avoid its drawbacks (i.e., getting trapped at the local optima). The main idea of the proposed model, called FPASSA-ANFIS, is to improve the performance of ANFIS by determining the parameters of ANFIS using FPASSA. The FPASSA-ANFIS model is evaluated using the World Health Organization (WHO) official data of the outbreak of the COVID-19 to forecast the confirmed cases of the upcoming ten days. More so, the FPASSA-ANFIS model is compared to several existing models, and it showed better performance in terms of Mean Absolute Percentage Error (MAPE), Root Mean Squared Relative Error (RMSRE), Root Mean Squared Relative Error (RMSRE), coefficient of determination ( R 2 ), and computing time. Furthermore, we tested the proposed model using two different datasets of weekly influenza confirmed cases in two countries, namely the USA and China. The outcomes also showed good performances.


2018 ◽  
Vol 14 (3) ◽  
pp. 382-385
Author(s):  
Azme Khamis ◽  
Nur Azreen Abdul Razak ◽  
Mohd Asrul Affendi Abdullah

Economic indicator measures how solid or strong an economy of a country is. Basically, economic growth can be measured by using the economic indicators as they give an account of the quality or shortcoming of an economy. Vector Auto-regressive (VAR) method is commonly useful in forecasting the economic growth involving a bounteous of economic indicators. However, problems arise when its parameters are estimated using least square method which is very sensitive to the outliers existence. Thus, the aim of this study is to propose the best method in dealing with the outliers data so that the forecasting result is not biased. Data used in this study are the economic indicators monthly basis starting from January 1998 to January 2016. Two methods are considered, which are filtering technique via least median square (LMS), least trimmed square (LTS), least quartile difference (LQD) and imputation technique via mean and median. Using the mean absolute percentage error (MAPE) as the forecasting performance measure, this study concludes that Robust VAR with LQD filtering is a more appropriate model compare to others model. 


Author(s):  
Kentaro Miyago ◽  
Kenyu Uehara ◽  
Takashi Saito

Recently, traffic accidents due to drowsy driving, operation mistake in the power plant by drowsiness and decrease arousal in employment during work have been attracted as problems. To avoid such an accident, arousal level could be quantitatively evaluated in real time. We suggested that the one of the parameters of Duffing oscillator parameters is related to the conventional arousal level using the EEG frequency component. However, in this examination, effects on the EEG from visual and active behavior were considered, but those from hearing also need to be investigated. In this paper, we performed the experiment in the musical environment using rock and classic music to investigate the model parameters for effect of the auditory stimulation, and acquired EEG data in Visual cortex and Frontal lobe. The acquired EEG data was used to identify the model parameters, which were identified solving the inverse problem by Least Square method. Results of investigating correlation between conventional arousal revel and model parameter shows a significant correlation in case of the auditory environmental situation. Moreover, Visual cortex is better than Frontal lobe as a measurement point in this evaluation method.


2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Wenxian Duan ◽  
Chuanxue Song ◽  
Yuan Chen ◽  
Feng Xiao ◽  
Silun Peng ◽  
...  

An accurate state of charge (SOC) can provide effective judgment for the BMS, which is conducive for prolonging battery life and protecting the working state of the entire battery pack. In this study, the first-order RC battery model is used as the research object and two parameter identification methods based on the least square method (RLS) are analyzed and discussed in detail. The simulation results show that the model parameters identified under the Federal Urban Driving Schedule (HPPC) condition are not suitable for the Federal Urban Driving Schedule (FUDS) condition. The parameters of the model are not universal through the HPPC condition. A multitimescale prediction model is also proposed to estimate the SOC of the battery. That is, the extended Kalman filter (EKF) is adopted to update the model parameters and the adaptive unscented Kalman filter (AUKF) is used to predict the battery SOC. The experimental results at different temperatures show that the EKF-AUKF method is superior to other methods. The algorithm is simulated and verified under different initial SOC errors. In the whole FUDS operating condition, the RSME of the SOC is within 1%, and that of the voltage is within 0.01 V. It indicates that the proposed algorithm can obtain accurate estimation results and has strong robustness. Moreover, the simulation results after adding noise errors to the current and voltage values reveal that the algorithm can eliminate the sensor accuracy effect to a certain extent.


Sign in / Sign up

Export Citation Format

Share Document