Modeling water exchange in the Oder River mouth area

Author(s):  
Halina Kowalewska-Kalkowska ◽  
Marek Kowalewski

Modeling water exchange in the Oder River mouth areaA three-dimensional operational hydrodynamic model of the Baltic Sea (M3D_UG) developed based on the Princeton Ocean Model (POM) was applied to model water exchange in the Oder River mouth area. Due to wind-driven back flow in the Oder mouth, a simplified operational model of river discharge was also developed based on the water budget in a stream channel. Linking the Oder discharge and Baltic Sea models into a single system allowed simulating hydrodynamic conditions in the Szczecin Lagoon and the Pomeranian Bay. Since the model adequately approximates hydrodynamic variability, it is a reliable tool for modeling water exchange in the Oder River mouth area and for assessing Oder water spread in the Baltic Sea.

2017 ◽  
Author(s):  
Jaromir Jakacki ◽  
Sebastian Meler

Abstract. A three dimensional, regional coupled ice-ocean model based on the open-source Community Earth System Model has been developed and implemented for the Baltic Sea. The model consists of 66 vertical levels and has a horizontal resolution of approx. 2.3 km. The paper focuses on sea ice component results but the main changes have been introduced in the ocean part of the coupled model. The hydrodynamic part, being one of the most important components, has been also presented and validated. The ice model results were validated against the radar and satellite data, and the method of validation based on probability was introduced. In the last two decades satellite and model results show an increase in the ice extent over the whole Baltic Sea, which is an evidence of a negative trend in air temperature in recent decades and increasing of winter discharge from the catchment area.


Oceanologia ◽  
2020 ◽  
Author(s):  
Alexander Krek ◽  
Andrey Gusev ◽  
Elena Krek ◽  
Viktor Krechik ◽  
Mariia Kapustina ◽  
...  

Differences and similarities in the way marine and continental organisms occupy space are briefly reviewed. Among them, the ‘peninsula effect’ (the decline of species richness with distance from the source) is compared with the ‘bay effect’. Two cases, corals in Mochima Bay, Venezuela and fishes in the Baltic Sea, are presented as examples. The facts that the world’s oceans are larger, continuous and three-dimensional, with fewer evident geographical barriers than there are on land, explain why marine biogeographical regions are less welldefined and geographical ranges of marine taxa more wide-spread. I his generalization has, however, been questioned following recent findings of extremely rich and highly endemic benthic faunas. This problem is discussed using an index of cosmopolitanism to compare terrestrial and marine biotas.


Author(s):  
Andrzej Osadczuk ◽  
Stanisław Musielak ◽  
Ryszard Borówka

Why should the Odra River mouth area not be regarded as an estuary? A geologist's point of viewThe authors find no arguments that would justify application of the term "estuary" to the area of the Odra River discharge into the Baltic Sea. The physiography, geology, and hydrology of the Odra river mouth show that the area possesses many more characteristics typical of flow-through coastal lagoons than those of estuaries. Of key importance in this respect is the Szczecin Lagoon, an extensive, shallow water body separated from the open sea by a barrier intersected by three narrow and long straits. The lagoonal nature of the area is demonstrated also by its geological history.


2017 ◽  
Vol 14 (8) ◽  
pp. 2113-2131 ◽  
Author(s):  
Ye Liu ◽  
H. E. Markus Meier ◽  
Kari Eilola

Abstract. Long-term oxygen and nutrient transports in the Baltic Sea are reconstructed using the Swedish Coastal and Ocean Biogeochemical model (SCOBI) coupled to the Rossby Centre Ocean model (RCO). Two simulations with and without data assimilation covering the period 1970–1999 are carried out. Here, the weakly coupled scheme with the Ensemble Optimal Interpolation (EnOI) method is adopted to assimilate observed profiles in the reanalysis system. The reanalysis shows considerable improvement in the simulation of both oxygen and nutrient concentrations relative to the free run. Further, the results suggest that the assimilation of biogeochemical observations has a significant effect on the simulation of the oxygen-dependent dynamics of biogeochemical cycles. From the reanalysis, nutrient transports between sub-basins, between the coastal zone and the open sea, and across latitudinal and longitudinal cross sections are calculated. Further, the spatial distributions of regions with nutrient import or export are examined. Our results emphasize the important role of the Baltic proper for the entire Baltic Sea, with large net transport (export minus import) of nutrients from the Baltic proper into the surrounding sub-basins (except the net phosphorus import from the Gulf of Riga and the net nitrogen import from the Gulf of Riga and Danish Straits). In agreement with previous studies, we found that the Bothnian Sea imports large amounts of phosphorus from the Baltic proper that are retained in this sub-basin. For the calculation of sub-basin budgets, the location of the lateral borders of the sub-basins is crucial, because net transports may change sign with the location of the border. Although the overall transport patterns resemble the results of previous studies, our calculated estimates differ in detail considerably.


2015 ◽  
Vol 55 (1) ◽  
pp. 5-15
Author(s):  
E. A. Kulikov ◽  
I. P. Medvedev ◽  
K. P. Koltermann

1983 ◽  
Vol 1983 (1) ◽  
pp. 517-520
Author(s):  
Olof Linden ◽  
Jan Mattsson ◽  
Mats Notini

ABSTRACT The impact of a spill of about 375 tons of light fuel oil in the southern Baltic Sea has been studied for one year. The spill originated from the tanker Sefir which sank to a 50 meter depth about six nautical miles east of the island of Öland. The study showed that the oil formed droplets which were taken up by zooplankton. Up to 50 percent of the zooplankton died during the acute phase of the spill. The oil droplets were well dispersed and sedimented over large areas. In six weeks during the acute phase of the spill, about 20,500 kilograms of oil sedimented over a 10 square kilometer area around the wreck. This corresponds to about 5.5 percent of the total amount of lost oil. Bivalves showed some uptake of oil. The littoral fauna was reduced drastically over a 10 km stretch of the coast. Only 2 percent of the fauna survived. The biomass and number of species also dropped considerably. One year after the spill, a slight recovery could be observed. The severe impact in the littoral zone was caused by a combination of the high toxicity of the oil and the low water exchange in the shallow water. In addition, the low water temperature preserved the toxic properties of the oil.


2019 ◽  
Author(s):  
Martin Jakobsson ◽  
Christian Stranne ◽  
Matt O'Regan ◽  
Sarah L. Greenwood ◽  
Bo Gustafsson ◽  
...  

Abstract. Marine science and engineering commonly require reliable information about seafloor depth (bathymetry), e.g. for studies of ocean circulation, bottom habitats, fishing resources, sediment transport, geohazards and site selection for platforms and cables. Baltic Sea bathymetric properties are analysed here using the using the newly released Digital Bathymetric Model (DBM) by the European Marine Observation and Data Network (EMODnet). The analyses include hypsometry, volume, descriptive depth statistics, and km-scale seafloor ruggedness, i.e. terrain heterogeneity, for the Baltic Sea as a whole as well as for 17 sub-basins defined by the Baltic Marine Environment Protection Commission (HELCOM). We compare the new EMODnet DBM with IOWTOPO, the previously most widely used DBM of the Baltic Sea which has served as the primary gridded bathymetric resource in physical and environmental studies for nearly two decades. The area of deep water exchange between the Bothnian Sea and the Northern Baltic Proper across the Åland Sea is specifically analysed in terms of depths and locations of critical bathymetric sills. The EMODnet DBM provides a bathymetric sill depth of 88 m at the northern side of the Åland Sea and 60 m at the southern side, differing from previously identified sill depths of 100 and 70 m respectively. High-resolution multibeam bathymetry acquired from this deep water exchange path, where vigorous bottom currents interacted with the seafloor, allows us to assess what we are missing in presently available DBMs in terms of physical characterisation and our ability to then interpret seafloor processes and highlights the need for continued work towards complete high-resolution mapping of the Baltic Sea seafloor.


Sign in / Sign up

Export Citation Format

Share Document