scholarly journals Frequency Selective Control of a Parallel Active Filter with Resonance Filter Regulators

2009 ◽  
Vol 46 (1) ◽  
pp. 3-14 ◽  
Author(s):  
O. Krievs ◽  
L. Ribickis

Frequency Selective Control of a Parallel Active Filter with Resonance Filter RegulatorsThe paper describes a method for frequency selective control of parallel active filters that are applied for compensation of the current harmonic distortions and the displacement power factor in symmetrical three-phase systems with a known harmonic spectrum. For simulation, an active filter for harmonic current compensation of a three-phase full-bridge diode rectifier was used. Comparative analysis has shown a good agreement between the results obtained experimentally and by simulation

Author(s):  
Sérgio Augusto Oliveira da Silva ◽  
Pedro F. Donoso-Garcia ◽  
Porfírio C. Cortizo ◽  
Paulo F. Seixas

This paper presents a three-phase line-interactive uninterruptible power supply (UPS) system with active series-parallel power-line conditioning capabilities. Synchronous reference frame (SRF)-based controller is used for harmonic and reactive power compensation generated from any configuration of non-linear loads. Under normal line conditions the UPS system works with universal filtering capabilities, such as compensating the input currents and output voltages. Two three-phase pulsewidth modulation (PWM) converters, called series and parallel active filters, are used to perform the series and parallel active power-line compensation. The series active filter works as sinusoidal current source in phase with the input voltage, drawing from utility sinusoidal and balanced input currents with low total harmonic distortion (THD). The parallel active filter works as sinusoidal voltage source in phase with the input voltage, providing regulated and sinusoidal output voltages with low THD. The performance of the UPS system is evaluated in three-phase, four-wire systems. Experimental results are presented to confirm the theoretical studies.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 830
Author(s):  
Julio Cesar Martinez-Garcia ◽  
Alexandre Serraïma-Ferrer ◽  
Aitor Lopeandía-Fernández ◽  
Marco Lattuada ◽  
Janak Sapkota ◽  
...  

In this work, the effective mechanical reinforcement of polymeric nanocomposites containing spherical particle fillers is predicted based on a generalized analytical three-phase-series-parallel model, considering the concepts of percolation and the interfacial glassy region. While the concept of percolation is solely taken as a contribution of the filler-network, we herein show that the glassy interphase between filler and matrix, which is often in the nanometers range, is also to be considered while interpreting enhanced mechanical properties of particulate filled polymeric nanocomposites. To demonstrate the relevance of the proposed generalized equation, we have fitted several experimental results which show a good agreement with theoretical predictions. Thus, the approach presented here can be valuable to elucidate new possible conceptual routes for the creation of new materials with fundamental technological applications and can open a new research avenue for future studies.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1259
Author(s):  
Francisco G. Montoya ◽  
Raúl Baños ◽  
Alfredo Alcayde ◽  
Francisco Manuel Arrabal-Campos ◽  
Javier Roldán Roldán Pérez

This paper presents a new framework based on geometric algebra (GA) to solve and analyse three-phase balanced electrical circuits under sinusoidal and non-sinusoidal conditions. The proposed approach is an exploratory application of the geometric algebra power theory (GAPoT) to multiple-phase systems. A definition of geometric apparent power for three-phase systems, that complies with the energy conservation principle, is also introduced. Power calculations are performed in a multi-dimensional Euclidean space where cross effects between voltage and current harmonics are taken into consideration. By using the proposed framework, the current can be easily geometrically decomposed into active- and non-active components for current compensation purposes. The paper includes detailed examples in which electrical circuits are solved and the results are analysed. This work is a first step towards a more advanced polyphase proposal that can be applied to systems under real operation conditions, where unbalance and asymmetry is considered.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1583
Author(s):  
Wei-Tse Kao ◽  
Jonq-Chin Hwang ◽  
Jia-En Liu

This study aimed to develop a three-phase permanent-magnet synchronous motor drive system with improvement in current harmonics. Considering the harmonic components in the induced electromotive force of a permanent-magnet synchronous motor, the offline response of the induced electromotive force (EMF) was measured for fast Fourier analysis, the main harmonic components were obtained, and the voltage required to reduce the current harmonic components in the corresponding direct (d-axis) and quadrature (q-axis) axes was calculated. In the closed-loop control of the direct axis and quadrature axis current in the rotor reference frame, the compensation amount of the induced EMF with harmonic components was added. Compared with the online adjustment of current harmonic injection, this simplifies the control strategy. The drive system used a 32-bit digital signal processor (DSP) TMS320F28069 as the control core, the control strategies were implemented in software, and a resolver with a resolver-to-digital converter (RDC) was used for the feedback of angular position and speed. The actual measurement results of the current harmonic improvement control show that the total harmonic distortion of the three-phase current was reduced from 5.30% to 2.31%, and the electromagnetic torque ripple was reduced from 15.28% to 5.98%. The actual measurement results verify the feasibility of this method.


Sign in / Sign up

Export Citation Format

Share Document