scholarly journals Comparison of Physiological and Metabolic Responses to Playing Nintendo Wii Sports and Brisk Treadmill Walking

2009 ◽  
Vol 22 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Mark Willems ◽  
Timothy Bond

Comparison of Physiological and Metabolic Responses to Playing Nintendo Wii Sports and Brisk Treadmill WalkingRegular moderate-intensity exercise (e.g. brisk walking) provides health benefits. In the present study, we compared the physiological and metabolic responses of playing the Nintendo Wii Sports tennis, baseball and boxing with self-paced brisk treadmill walking. Ten young-adults (21±1 years; 73.9±12.0 kg; 1.76±0.06 m) played each sport for 10 min with a 5 min rest interval or, in a separate session, walked briskly (6.1±0.6 km·h-1) with an equivalent time order wearing the Cosmed K4b2metabolic system. In a bout of 10 min, the average values during Nintendo Wii boxing for physiological (i.e. minute ventilation, oxygen uptake and heart rate) and metabolic (i.e. energy expenditure, fat oxidation, carbohydrate oxidation and respiratory exchange ratio) responses were equal to brisk treadmill walking but lower for Nintendo Wii tennis and baseball (P<0.05). It was concluded that the physiological and metabolic responses of Nintendo Wii boxing would allow this game activity to be a viable part of a programme of structured exercise in young-adults to gain health benefits.

2015 ◽  
Vol 46 (1) ◽  
pp. 263-271 ◽  
Author(s):  
Stephen McGuire ◽  
Mark ET Willems

AbstractRegular moderate-intensity exercise provides health benefits. The aim of this study was to examine whether the selected exercise intensity and physiological responses during exergaming in a single and multiplayer mode in the same physical space were game-dependent. Ten males (mean ±SD, age: 23 ±5 years, body mass: 84.2 ±15.6 kg, body height: 180 ±7 cm, body mass index: 26.0 ±4.0 kg·m−2) played the games Kinect football, boxing and track & field (3 × ~10 min, ~ 2 min rest periods) in similar time sequence in two sessions. Physiological responses were measured with the portable Cosmed K4b2 pulmonary gas exchange system. Single play demands were used to match with a competitive opponent in a multiplay mode. A within-subjects crossover design was used with one-way ANOVA and a post-hoc t-test for analysis (p<0.05). Minute ventilation, oxygen uptake and the heart rate were at least 18% higher during a multiplayer mode for Kinect football and boxing but not for track & field. Energy expenditure was 21% higher during multiplay football. Single play track & field had higher metabolic equivalent than single play football (5.7 ±1.6, range: 3.2-8.6 vs 4.1 ±1.0, range: 3.0-6.1, p<0.05). Exergaming in a multiplayer mode can provide higher physiological demands but the effects are game-dependent. It seems that exergaming with low intensity in a multiplayer mode may provide a greater physical challenge for participants than in a single play mode but may not consistently provide sufficient intensity to acquire health benefits when played regularly as part of a programme to promote and maintain health in young adults.


1996 ◽  
Vol 271 (6) ◽  
pp. E983-E989 ◽  
Author(s):  
S. Sial ◽  
A. R. Coggan ◽  
R. Carroll ◽  
J. Goodwin ◽  
S. Klein

We evaluated the effect of aging on fat and carbohydrate metabolism during moderate intensity exercise. Glycerol, free fatty acid (FFA), and glucose rate of appearance (Ra) in plasma and substrate oxidation were determined during 60 min of cycle ergometer exercise in six elderly (73 +/- 2 yr) and six young adults (26 +/- 2 yr) matched by gender and lean body mass. The elderly group was studied during exercise performed at 56 +/- 3% of maximum oxygen uptake, whereas the young adults were studied during exercise performed at the same absolute and at a similar relative intensity as the elderly subjects. Mean fat oxidation during exercise was 25-35% lower in the elderly subjects than in the young adults exercising at either the same absolute or similar relative intensities (P < 0.05). Mean carbohydrate oxidation in the elderly group was 35% higher than the young adults exercising at the same absolute intensity (P < 0.001) but 40% lower than the young adults exercising at the same relative intensity (P < 0.001). Average FFA Ra in the elderly subjects was 85% higher than in the young adults exercising at the same absolute intensity (P < 0.05) but 35% lower than the young adults exercising at a similar relative intensity (P < 0.05). We conclude that fat oxidation is decreased while carbohydrate oxidation is increased during moderate intensity exercise in elderly men and women. The shift in substrate oxidation was caused by age-related changes in skeletal muscle respiratory capacity because lipolytic rates and FFA availability were not rate limiting in the older subjects.


2005 ◽  
Vol 98 (4) ◽  
pp. 1371-1378 ◽  
Author(s):  
Brendon J. Gurd ◽  
Barry W. Scheuermann ◽  
Donald H. Paterson ◽  
John M. Kowalchuk

The effect of prior heavy-intensity warm-up exercise on subsequent moderate-intensity phase 2 pulmonary O2 uptake kinetics (τV̇o2) was examined in young adults exhibiting relatively fast (FK; τV̇o2 < 30 s; n = 6) and slow (SK; τV̇o2 > 30 s; n = 6) V̇o2 kinetics in moderate-intensity exercise without prior warm up. Subjects performed four repetitions of a moderate (Mod1)-heavy-moderate (Mod2) protocol on a cycle ergometer with work rates corresponding to 80% estimated lactate threshold (moderate intensity) and 50% difference between lactate threshold and peak V̇o2 (heavy intensity); each transition lasted 6 min, and each was preceded by 6 min of cycling at 20 W. V̇o2 and heart rate (HR) were measured breath-by-breath and beat-by-beat, respectively; concentration changes of muscle deoxyhemoglobin (HHb), oxyhemoglobin, and total hemoglobin were measured by near-infrared spectroscopy (Hamamatsu NIRO 300). τV̇o2 was lower ( P < 0.05) in Mod2 than in Mod1 in both FK (20 ± 5 s vs. 26 ± 5 s, respectively) and SK (30 ± 8 s vs. 45 ± 11 s, respectively); linear regression analysis showed a greater “speeding” of V̇o2 kinetics in subjects exhibiting a greater Mod1 τV̇o2. HR, oxyhemoglobin, and total hemoglobin were elevated ( P < 0.05) in Mod2 compared with Mod1. The delay before the increase in HHb was reduced ( P < 0.05) in Mod2, whereas the HHb mean response time was reduced ( P < 0.05) in FK (Mod2, 22 ± 3 s; Mod1, 32 ± 11 s) but not different in SK (Mod2, 36 ± 13 s; Mod1, 34 ± 15 s). We conclude that improved muscle perfusion in Mod2 may have contributed to the faster adaptation of V̇o2, especially in SK; however, a possible role for metabolic inertia in some subjects cannot be overlooked.


2008 ◽  
Vol 294 (2) ◽  
pp. R577-R584 ◽  
Author(s):  
B. J. Gurd ◽  
S. J. Peters ◽  
G. J. F. Heigenhauser ◽  
P. J. LeBlanc ◽  
T. J. Doherty ◽  
...  

The adaptation of pulmonary O2 uptake (V̇o2p) kinetics is slowed in older compared with young adults during the transition to moderate-intensity exercise. In this study, we examined the relationship between V̇o2p kinetics and mitochondrial pyruvate dehydrogenase (PDH) activity in young ( n = 7) and older ( n = 6) adults. Subjects performed cycle exercise to a work rate corresponding to ∼90% of estimated lactate threshold. Phase 2 V̇o2p kinetics were slower ( P < 0.05) in older (τ = 40 ± 17 s) compared with young (τ = 21 ± 6 s) adults. Relative phosphocreatine (PCr) breakdown was greater ( P < 0.05) at 30 s in older compared with young adults. Absolute PCr breakdown at 6 min was greater ( P < 0.05) in older compared with young adults. In young adults, PDH activity increased ( P < 0.05) from baseline to 30 s, with no further change observed at 6 min. In older adults, PDH activity during baseline exercise was similar to that seen in young adults. During the exercise transition, PDH activity did not increase ( P > 0.05) at 30 s of exercise but was elevated ( P < 0.05) after 6 min. The change in deoxyhemoglobin (HHb) was greater for a given V̇o2p in older adults, and there was a similar time course of HHb accompanying the slower V̇o2p kinetics in the older adults, suggesting a slower adaptation of bulk O2 delivery in older adults. In conclusion, the slower adaptation of V̇o2p in older adults is likely a result of both an increased metabolic inertia and lower O2 availability.


Author(s):  
Ed A. Maunder ◽  
Helen E. Bradley ◽  
Colleen S. Deane ◽  
Adrian B. Hodgson ◽  
Michael Jones ◽  
...  

Altering dietary carbohydrate (CHO) intake modulates fuel utilization during exercise. However, there has been no systematic evaluation of metabolic responses to graded changes in short-term (< 1 week) dietary CHO intake. Thirteen active men performed interval running exercise combined with isocaloric diets over 3 days before evaluation of metabolic responses to 60-min running at 65% V̇O2max on three occasions. Diets contained lower (LOW, 2.40 ± 0.66 g CHO.kg-1.d-1, 21.3 ± 0.5% of energy intake [EI]), moderate (MOD, 4.98 ± 1.31 g CHO.kg-1.d-1, 46.3 ± 0.7% EI), or higher (HIGH, 6.48 ± 1.56 g CHO.kg-1.d-1, 60.5 ± 1.6% EI) CHO. Pre-exercise muscle glycogen content was lower in LOW (54.3 ± 26.4 mmol.kg-1 wet weight [ww]) compared to MOD (82.6 ± 18.8 mmol.kg-1 ww) and HIGH (80.4 ± 26.0 mmol.kg-1 ww, P<0.001; MOD vs. HIGH, P=0.85). Whole-body substrate oxidation, systemic responses, and muscle substrate utilization during exercise indicated increased fat and decreased CHO metabolism in LOW (RER: 0.81 ± 0.01) compared to MOD (RER 0.86 ± 0.01, P = 0.0005) and HIGH (RER: 0.88 ± 0.01, P < 0.0001; MOD vs. HIGH, P=0.14). Higher basal muscle expression of genes encoding proteins implicated in fat utilization was observed in LOW. In conclusion, muscle glycogen availability and subsequent metabolic responses to exercise were resistant to increases in dietary CHO intake from ~5.0 to ~6.5 g CHO.kg-1.d-1 (46% to 61% EI), while muscle glycogen, gene expression and metabolic responses were sensitive to more marked reductions in CHO intake (~2.4 g CHO.kg-1.d-1, ~21% EI).


2020 ◽  
Author(s):  
Keir EJ Philip ◽  
Adam Lewis ◽  
Sara C Buttery ◽  
Colm McCabe ◽  
Bishman Manivannan ◽  
...  

AbstractParticipating in singing is considered to have a range of social and psychological benefits. However, the physiological demands of singing, whether it can be considered exercise, and its intensity as a physical activity are not well understood. We therefore compared cardiorespiratory parameters while completing components of Singing for Lung Health (SLH) sessions, with treadmill walking at differing speeds (2, 4, and 6km/hr). Eight healthy adults were included, none of whom reported regular participation in formal singing activities. Singing induced physiological responses that were consistent with moderate intensity activity (METS: median 4.12, IQR 2.72 - 4.78), with oxygen consumption, heart rate, and volume per breath above those seen walking at 4km/hr. Minute ventilation was higher during singing (median 22.42L/min, IQR 16.83 - 30.54) than at rest (11L/min, 9 - 13), lower than 6km/hr walking (30.35L/min, 26.94 - 41.11), but not statistically different from 2km/hr (18.77L/min, 16.89 - 21.35) or 4km/hr (23.27L/min, 20.09 - 26.37) walking. Our findings suggest the metabolic demands of singing may contribute to the health and wellbeing benefits attributed to participation. However, if physical training benefits result remains uncertain. Further research including different singing styles, singers, and physical performance impacts when used as a training modality is encouraged.


2008 ◽  
Vol 104 (4) ◽  
pp. 998-1005 ◽  
Author(s):  
Naoto Fujii ◽  
Yasushi Honda ◽  
Keiji Hayashi ◽  
Hideaki Soya ◽  
Narihiko Kondo ◽  
...  

We tested the hypothesis that, in humans, hyperthermic hyperpnea elicited in resting subjects differs from that elicited during submaximal, moderate-intensity exercise. In the rest trial, hot-water legs-only immersion and a water-perfused suit were used to increase esophageal temperature (Tes) in 19 healthy male subjects; in the exercise trial, Tes was increased by prolonged submaximal cycling [50% peak O2 uptake (V̇o2)] in the heat (35°C). Minute ventilation (V̇e), ventilatory equivalent for V̇o2 (V̇e/V̇o2) and CO2 output (V̇e/V̇co2), tidal volume (Vt), and respiratory frequency (f) were plotted as functions of Tes. In the exercise trial, V̇e increased linearly with increases (from 37.0 to 38.7°C) in Tes in all subjects; in the rest trial, 14 of the 19 subjects showed a Tes threshold for hyperpnea (37.8 ± 0.5°C). Above the threshold for hyperpnea, the slope of the regression line relating V̇e and Tes was significantly greater for the rest than the exercise trial. Moreover, the slopes of the regression lines relating V̇e/V̇o2, V̇e/V̇co2, and Tes were significantly greater for the rest than the exercise trial. The increase in V̇e reflected increases in Vt and f in the rest trial, but only f in the exercise trial, after an initial increase in ventilation due to Vt. Finally, the slope of the regression line relating Tes and Vt or f was significantly greater for the rest than the exercise trial. These findings indicate that hyperthermic hyperpnea does indeed differ, depending on whether one is at rest or exercising at submaximal, moderate intensity.


Sign in / Sign up

Export Citation Format

Share Document