scholarly journals Physiological Responses During Multiplay Exergaming in Young Adult Males are Game-Dependent

2015 ◽  
Vol 46 (1) ◽  
pp. 263-271 ◽  
Author(s):  
Stephen McGuire ◽  
Mark ET Willems

AbstractRegular moderate-intensity exercise provides health benefits. The aim of this study was to examine whether the selected exercise intensity and physiological responses during exergaming in a single and multiplayer mode in the same physical space were game-dependent. Ten males (mean ±SD, age: 23 ±5 years, body mass: 84.2 ±15.6 kg, body height: 180 ±7 cm, body mass index: 26.0 ±4.0 kg·m−2) played the games Kinect football, boxing and track & field (3 × ~10 min, ~ 2 min rest periods) in similar time sequence in two sessions. Physiological responses were measured with the portable Cosmed K4b2 pulmonary gas exchange system. Single play demands were used to match with a competitive opponent in a multiplay mode. A within-subjects crossover design was used with one-way ANOVA and a post-hoc t-test for analysis (p<0.05). Minute ventilation, oxygen uptake and the heart rate were at least 18% higher during a multiplayer mode for Kinect football and boxing but not for track & field. Energy expenditure was 21% higher during multiplay football. Single play track & field had higher metabolic equivalent than single play football (5.7 ±1.6, range: 3.2-8.6 vs 4.1 ±1.0, range: 3.0-6.1, p<0.05). Exergaming in a multiplayer mode can provide higher physiological demands but the effects are game-dependent. It seems that exergaming with low intensity in a multiplayer mode may provide a greater physical challenge for participants than in a single play mode but may not consistently provide sufficient intensity to acquire health benefits when played regularly as part of a programme to promote and maintain health in young adults.

2009 ◽  
Vol 22 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Mark Willems ◽  
Timothy Bond

Comparison of Physiological and Metabolic Responses to Playing Nintendo Wii Sports and Brisk Treadmill WalkingRegular moderate-intensity exercise (e.g. brisk walking) provides health benefits. In the present study, we compared the physiological and metabolic responses of playing the Nintendo Wii Sports tennis, baseball and boxing with self-paced brisk treadmill walking. Ten young-adults (21±1 years; 73.9±12.0 kg; 1.76±0.06 m) played each sport for 10 min with a 5 min rest interval or, in a separate session, walked briskly (6.1±0.6 km·h-1) with an equivalent time order wearing the Cosmed K4b2metabolic system. In a bout of 10 min, the average values during Nintendo Wii boxing for physiological (i.e. minute ventilation, oxygen uptake and heart rate) and metabolic (i.e. energy expenditure, fat oxidation, carbohydrate oxidation and respiratory exchange ratio) responses were equal to brisk treadmill walking but lower for Nintendo Wii tennis and baseball (P<0.05). It was concluded that the physiological and metabolic responses of Nintendo Wii boxing would allow this game activity to be a viable part of a programme of structured exercise in young-adults to gain health benefits.


2008 ◽  
Vol 294 (2) ◽  
pp. R577-R584 ◽  
Author(s):  
B. J. Gurd ◽  
S. J. Peters ◽  
G. J. F. Heigenhauser ◽  
P. J. LeBlanc ◽  
T. J. Doherty ◽  
...  

The adaptation of pulmonary O2 uptake (V̇o2p) kinetics is slowed in older compared with young adults during the transition to moderate-intensity exercise. In this study, we examined the relationship between V̇o2p kinetics and mitochondrial pyruvate dehydrogenase (PDH) activity in young ( n = 7) and older ( n = 6) adults. Subjects performed cycle exercise to a work rate corresponding to ∼90% of estimated lactate threshold. Phase 2 V̇o2p kinetics were slower ( P < 0.05) in older (τ = 40 ± 17 s) compared with young (τ = 21 ± 6 s) adults. Relative phosphocreatine (PCr) breakdown was greater ( P < 0.05) at 30 s in older compared with young adults. Absolute PCr breakdown at 6 min was greater ( P < 0.05) in older compared with young adults. In young adults, PDH activity increased ( P < 0.05) from baseline to 30 s, with no further change observed at 6 min. In older adults, PDH activity during baseline exercise was similar to that seen in young adults. During the exercise transition, PDH activity did not increase ( P > 0.05) at 30 s of exercise but was elevated ( P < 0.05) after 6 min. The change in deoxyhemoglobin (HHb) was greater for a given V̇o2p in older adults, and there was a similar time course of HHb accompanying the slower V̇o2p kinetics in the older adults, suggesting a slower adaptation of bulk O2 delivery in older adults. In conclusion, the slower adaptation of V̇o2p in older adults is likely a result of both an increased metabolic inertia and lower O2 availability.


2016 ◽  
Vol 87 (12) ◽  
pp. 1425-1434 ◽  
Author(s):  
Piero Fontana ◽  
Fabio Saiani ◽  
Marc Grütter ◽  
Jean-Philippe Croset ◽  
André Capt ◽  
...  

During firefighting, thermoregulation is challenged due to a combination of harsh environmental conditions, high metabolic rates and personal protective clothing (PPC). Consequently, investigations of thermoregulation in firefighters should not only consider climate and exercise intensity, but technical properties of textiles too. Therefore, laboratory textile performance simulations may provide additional insights into textile-dependent thermoregulatory responses to exercise. In order to investigate the thermo-physiological relevance of textile properties and to test how different garments affect thermoregulation at different exercise intensities, we analyzed the results of a standard laboratory test and human subject trials by relating functional properties of textiles to thermo-physiological responses. Ten professional, healthy, male firefighters (age: 43 ± 6 y, weight: 84.3 ± 10.3kg, height: 1.79 ± 0.05m) performed low and moderate intensity exercise wearing garments previously evaluated with a sweating torso system to characterize thermal and evaporative properties. Functional properties of PPC and the control garment differed markedly. Consequently, skin temperature was higher using PPC at both exercise intensities (low: 36.27 ± 0.32 versus 36.75 ± 0.15℃, P < 0.05; moderate: 36.53 ± 0.34 versus 37.18 ± 0.23℃, P < 0.001), while core body temperature was only higher for PPC at moderate (37.54 ± 0.24 versus 37.83 ± 0.27℃, P < 0.05), but not low-intensity exercise (37.26 ± 0.21 versus 37.21 ± 0.19, P = 0.685). Differences in thermal and evaporative properties between textiles are reflected in thermo-physiological responses during human subject trials. However, an appropriate exercise intensity has to be chosen in order to challenge textile performance during exercise tests.


2020 ◽  
Author(s):  
Keir EJ Philip ◽  
Adam Lewis ◽  
Sara C Buttery ◽  
Colm McCabe ◽  
Bishman Manivannan ◽  
...  

AbstractParticipating in singing is considered to have a range of social and psychological benefits. However, the physiological demands of singing, whether it can be considered exercise, and its intensity as a physical activity are not well understood. We therefore compared cardiorespiratory parameters while completing components of Singing for Lung Health (SLH) sessions, with treadmill walking at differing speeds (2, 4, and 6km/hr). Eight healthy adults were included, none of whom reported regular participation in formal singing activities. Singing induced physiological responses that were consistent with moderate intensity activity (METS: median 4.12, IQR 2.72 - 4.78), with oxygen consumption, heart rate, and volume per breath above those seen walking at 4km/hr. Minute ventilation was higher during singing (median 22.42L/min, IQR 16.83 - 30.54) than at rest (11L/min, 9 - 13), lower than 6km/hr walking (30.35L/min, 26.94 - 41.11), but not statistically different from 2km/hr (18.77L/min, 16.89 - 21.35) or 4km/hr (23.27L/min, 20.09 - 26.37) walking. Our findings suggest the metabolic demands of singing may contribute to the health and wellbeing benefits attributed to participation. However, if physical training benefits result remains uncertain. Further research including different singing styles, singers, and physical performance impacts when used as a training modality is encouraged.


2008 ◽  
Vol 104 (4) ◽  
pp. 998-1005 ◽  
Author(s):  
Naoto Fujii ◽  
Yasushi Honda ◽  
Keiji Hayashi ◽  
Hideaki Soya ◽  
Narihiko Kondo ◽  
...  

We tested the hypothesis that, in humans, hyperthermic hyperpnea elicited in resting subjects differs from that elicited during submaximal, moderate-intensity exercise. In the rest trial, hot-water legs-only immersion and a water-perfused suit were used to increase esophageal temperature (Tes) in 19 healthy male subjects; in the exercise trial, Tes was increased by prolonged submaximal cycling [50% peak O2 uptake (V̇o2)] in the heat (35°C). Minute ventilation (V̇e), ventilatory equivalent for V̇o2 (V̇e/V̇o2) and CO2 output (V̇e/V̇co2), tidal volume (Vt), and respiratory frequency (f) were plotted as functions of Tes. In the exercise trial, V̇e increased linearly with increases (from 37.0 to 38.7°C) in Tes in all subjects; in the rest trial, 14 of the 19 subjects showed a Tes threshold for hyperpnea (37.8 ± 0.5°C). Above the threshold for hyperpnea, the slope of the regression line relating V̇e and Tes was significantly greater for the rest than the exercise trial. Moreover, the slopes of the regression lines relating V̇e/V̇o2, V̇e/V̇co2, and Tes were significantly greater for the rest than the exercise trial. The increase in V̇e reflected increases in Vt and f in the rest trial, but only f in the exercise trial, after an initial increase in ventilation due to Vt. Finally, the slope of the regression line relating Tes and Vt or f was significantly greater for the rest than the exercise trial. These findings indicate that hyperthermic hyperpnea does indeed differ, depending on whether one is at rest or exercising at submaximal, moderate intensity.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1732 ◽  
Author(s):  
Mark Willems ◽  
Nisakorn Parktin ◽  
Waree Widjaja ◽  
Amornpan Ajjimaporn

New Zealand blackcurrant (NZBC) extract affects cardiovascular and metabolic responses during rest and exercise in Caucasian men. Ethnicity and nutritional habits may affect responses to nutritional ergogenic aids. We examined the effects of NZBC extract on cardiovascular, metabolic, and physiological responses during seated rest and moderate-intensity exercise in Southeast Asian men. Seventeen healthy Thai men (age: 22 ± 3 years; body mass index (BMI): 21.8 ± 1.1 kg·m−2) participated. Resting metabolic equivalent (1-MET) was measured (Oxycon™ mobile, Germany), and an incremental walking protocol was completed to establish the relationship between walking speed and MET. In a double-blind, randomized, placebo-controlled, crossover design, cardiovascular (Physioflow, n = 12) and physiological responses (Oxycon, n = 17) were measured during both seated rest and a 30-min treadmill walk at five metabolic equivalent (5-MET), with either a seven-day intake of placebo (PL) or two capsules of NZBC extract (each 300 mg capsule contains 35% blackcurrant extract) with a 14-day washout. Paired t-tests were used with significance accepted at p < 0.05 and a trend for 0.05 > p ≤ 0.10. During 30 min of treadmill walking at 5-MET, no differences were observed for heart rate and substrate oxidation. With intake of NZBC during treadmill walking, there was a trend for increased stroke volume by 12% (PL: 83.2 ± 25.1; NZBC: 93.0 ± 24.3 mL; p = 0.072) and cardiac output increased by 12% (PL: 9.2 ± 2.6; NZBC: 10.3 ± 2.8 L·min−1; p = 0.057). Systemic vascular resistance decreased by 10% (PL: 779 ± 267; NZBC: 697 ± 245 dyn·s·cm−5; p = 0.048). NZBC extract had no effect on metabolic, physiological, and cardiovascular parameters during seated rest and exercise-induced fat oxidation in Thai men, in contrast to observations in Caucasian men. During treadmill walking, Thai men showed cardiovascular response, indicating vasodilatory effects during moderate-intensity exercise with the intake of NZBC extract. Our findings suggest that the ergogenic responses to anthocyanin intake from New Zealand blackcurrant may be ethnicity-dependent.


2019 ◽  
Vol 40 (14) ◽  
pp. 886-896 ◽  
Author(s):  
Alessandro Fornasiero ◽  
Spyros Skafidas ◽  
Federico Stella ◽  
Andrea Zignoli ◽  
Aldo Savoldelli ◽  
...  

AbstractExercise physiological responses can be markedly affected by acute hypoxia. We investigated cardiac autonomic and physiological responses to different hypoxic training protocols. Thirteen men performed three exercise sessions (5×5-min; 1-min passive recovery): normoxic exercise at 80% of the power output (PO) at the first ventilatory threshold (N), hypoxic exercise (FiO2=14.2%) with the same PO as N (HPO) and hypoxic exercise at the same heart rate (HR) as N (HHR). PO was lower in HHR (21.1±9.3%) compared to N and HPO. Mean HR was higher in HPO (154±11 bpm, p<0.01) than N and HHR (139±10 vs. 138±9 bpm; p=0.80). SpO2 was reduced (p<0.01) to a similar extent (p>0.05) in HPO and HHR compared to N. HR recovery (HRR) and HR variability indices were similar in N and HHR (p>0.05) but reduced in HPO (p<0.05), mirroring a delayed parasympathetic reactivation. Blood lactate and ventilation were similar in N and HHR (p>0.05) and increased in HPO (p<0.001). During recovery oxygen consumption and ventilation were similar in N and HHR (p>0.05) and increased in HPO (p<0.01). Moderate HR-matched hypoxic exercise triggers similar cardiac autonomic and physiological responses to normoxic exercise with a reduced mechanical load. On the contrary, the same absolute intensity exercise in hypoxia is associated with increased exercise-induced metabolic stress and delayed cardiac autonomic recovery.


2015 ◽  
Vol 40 (2) ◽  
pp. 184-190 ◽  
Author(s):  
Adora M.W. Yau ◽  
Andrew D. Moss ◽  
Lewis John James ◽  
William Gilmore ◽  
Jason J. Ashworth ◽  
...  

Angiotensin converting enzyme (ACE) and bradykinin receptor B2 (B2R) genetic variation may affect thirst because of effects on angiotensin II production and bradykinin activity, respectively. To examine this, 45 healthy Caucasian men completed 60 min of cycle exercise at 62% ± 5% peak oxygen uptake in a room heated to 30.5 ± 0.3 °C with ad libitum fluid intake. Blood samples were collected pre-, mid-, and immediately post-cycle. Fluid intake, body mass loss (BML), sweat loss (determined via changes in body mass and fluid intake), and thirst sensation were recorded. All participants were genotyped for the ACE insert fragment (I) and the B2R insert sequence (P). Participants were homozygous for the wild-type allele (WW or MM), heterozygous (WI or MP) or homozygous for the insert (II or PP). No differences between genotype groups were found in mean (±SD) voluntary fluid intake (WW: 613 ± 388, WI: 753 ± 385, II: 862 ± 421 mL, p = 0.31; MM: 599 ± 322, MP: 745 ± 374, PP: 870 ± 459 mL, p = 0.20), percentage BML or any other fluid balance variables for both the ACE and B2R genes, respectively. Mean thirst perception in the B2R PP group, however, was higher (p < 0.05) than both MM and MP at 30, 45, and 60 min. In conclusion, the results of this study suggest that voluntary fluid intake and fluid balance in healthy men performing 60 min of moderate-intensity exercise in the heat are not predominantly influenced by ACE or B2R genetic variation.


2017 ◽  
Vol 312 (4) ◽  
pp. R467-R476 ◽  
Author(s):  
Kaitlin M. McLay ◽  
Juan M. Murias ◽  
Donald H. Paterson

The purpose of this study was to examine the time course of changes in the oxygen uptake (V̇o2) kinetics response subsequent to short-term exercise training (i.e., 24, 48, 72, and 120 h posttraining) and examine the relationship with the time course of changes in microvascular [deoxygenated hemoglobin concentration ([HHb])-to-V̇o2 ratio ([HHb])/V̇o2)] and macrovascular [flow-mediated dilation (FMD)] O2 delivery to the active tissues/limbs. Seven healthy older [OA; 74 ± 6 (SD) yr] and young men (YA; 25 ± 3 yr) completed three endurance cycling exercise training sessions at 70% V̇o2peak. Moderate-intensity exercise on-transient V̇o2 (measured breath by breath) and [HHb] (measured by near-infrared spectroscopy) were modeled with a monoexponential and normalized (0–100% of response), and the [HHb])/V̇o2 was calculated. Ultrasound-derived FMD of the popliteal artery was assessed after 5 min of cuff occlusion. %FMD was calculated as the greatest percent change in diameter from baseline. Time constant of V̇o2 (τV̇o2) was significantly reduced in both OA (~18%) and YA (~23%) at 24 h ( P < 0.001) posttraining and remained decreased at 48 h before returning toward pretraining (PRE) values. Both groups showed a significant decrease in the [HHb])/V̇o2 at 24, 48, and 72 h ( P = 0.001, 0.01, and 0.03, respectively) posttraining before returning toward PRE values at 120 h. %FMD followed a similar time course to that of changes in the [HHb])/V̇o2, being significantly greater in both OA (by ~64%) and YA (by ~26%) at 24 h ( P < 0.001), remaining increased at 48 and 72 h ( P = 0.02 and 0.03, respectively), and returning toward PRE values at 120 h. These data suggest the rate of adjustment of V̇o2 may be constrained by O2 availability in the active tissues.


2013 ◽  
Vol 115 (3) ◽  
pp. 325-336 ◽  
Author(s):  
Lee J. Wylie ◽  
James Kelly ◽  
Stephen J. Bailey ◽  
Jamie R. Blackwell ◽  
Philip F. Skiba ◽  
...  

Dietary supplementation with beetroot juice (BR), containing approximately 5–8 mmol inorganic nitrate (NO3−), increases plasma nitrite concentration ([NO2−]), reduces blood pressure, and may positively influence the physiological responses to exercise. However, the dose-response relationship between the volume of BR ingested and the physiological effects invoked has not been investigated. In a balanced crossover design, 10 healthy men ingested 70, 140, or 280 ml concentrated BR (containing 4.2, 8.4, and 16.8 mmol NO3−, respectively) or no supplement to establish the effects of BR on resting plasma [NO3−] and [NO2−] over 24 h. Subsequently, on six separate occasions, 10 subjects completed moderate-intensity and severe-intensity cycle exercise tests, 2.5 h postingestion of 70, 140, and 280 ml BR or NO3−-depleted BR as placebo (PL). Following acute BR ingestion, plasma [NO2−] increased in a dose-dependent manner, with the peak changes occurring at approximately 2–3 h. Compared with PL, 70 ml BR did not alter the physiological responses to exercise. However, 140 and 280 ml BR reduced the steady-state oxygen (O2) uptake during moderate-intensity exercise by 1.7% ( P = 0.06) and 3.0% ( P < 0.05), whereas time-to-task failure was extended by 14% and 12% (both P < 0.05), respectively, compared with PL. The results indicate that whereas plasma [NO2−] and the O2 cost of moderate-intensity exercise are altered dose dependently with NO3−-rich BR, there is no additional improvement in exercise tolerance after ingesting BR containing 16.8 compared with 8.4 mmol NO3−. These findings have important implications for the use of BR to enhance cardiovascular health and exercise performance in young adults.


Sign in / Sign up

Export Citation Format

Share Document