scholarly journals Measurement of heat flux density and heat transfer coefficient

2010 ◽  
Vol 31 (3) ◽  
pp. 3-18 ◽  
Author(s):  
Dawid Taler ◽  
Sławomir Grądziel ◽  
Jan Taler

Measurement of heat flux density and heat transfer coefficientThe paper presents the solution to a problem of determining the heat flux density and the heat transfer coefficient, on the basis of temperature measurement at three locations in the flat sensor, with the assumption that the heat conductivity of the sensor material is temperature dependent. Three different methods for determining the heat flux and heat transfer coefficient, with their practical applications, are presented. The uncertainties in the determined values are also estimated.

2010 ◽  
Vol 43 ◽  
pp. 424-429
Author(s):  
Zi Ran Liu ◽  
Cai Xia Ren ◽  
Xian Guo Yan

In the process of the finite element analogy of the Cryogenic Treatment of the high speed steel cutter with respect to the material of W9Mo3Cr4V, the surface heat transfer coefficient is a crucial parameter. In order to get this parameter, this paper employed the method of inverse heat conduction to process the temperature curve generated through the cryogenic treatment of the tested work piece with the material of W9Mo0Cr4V, thereby obtaining the surface heat transfer coefficient of the tested work piece. This coefficient can be considered the surface heat transfer coefficient of cryogenic treatment of the cutter with the same material. The principle of the inverse heat conduction is as follows: firstly, according to the boundary condition and the initial value in the tri-dimensional space, the equation of the sensitivity coefficient and the temperature field can be deduced. Second, the coupling of two equations is carried out, and the heat flux density is calculated based on above result. The heat flux density will be revise to get the reasonable value . Lastly, the surface heat transfer coefficient can be obtained by the heat flux density. In this paper, all the work is automatically accomplished with the aid of FEPG soft ware and Visual C++ programmable language.


Author(s):  
AS Sabu ◽  
Joby Mackolil ◽  
B Mahanthesh ◽  
Alphonsa Mathew

The study focuses on the aggregation kinematics in the quadratic convective magneto-hydrodynamics of ethylene glycol-titania ([Formula: see text]) nanofluid flowing through an inclined flat plate. The modified Krieger-Dougherty and Maxwell-Bruggeman models are used for the effective viscosity and thermal conductivity to account for the aggregation aspect. The effects of an exponential space-dependent heat source and thermal radiation are incorporated. The impact of pertinent parameters on the heat transfer coefficient is explored by using the Response Surface Methodology and Sensitivity Analysis. The effects of several parameters on the skin friction and heat transfer coefficient at the plate are displayed via surface graphs. The velocity and thermal profiles are compared for two physical scenarios: flow over a vertical plate and flow over an inclined plate. The nonlinear problem is solved using the Runge–Kutta-based shooting technique. It was found that the velocity profile significantly decreased as the inclination of the plate increased on the other hand the temperature profile improved. The heat transfer coefficient decreased due to the increase in the Hartmann number. The exponential heat source has a decreasing effect on the heat flux and the angle of inclination is more sensitive to the heat transfer coefficient than other variables. Further, when radiation is incremented, the sensitivity of the heat flux toward the inclination angle augments at the rate 0.5094% and the sensitivity toward the exponential heat source augments at the rate 0.0925%. In addition, 41.1388% decrement in wall shear stress is observed when the plate inclination is incremented from [Formula: see text] to [Formula: see text].


Author(s):  
Z. M. Zhang ◽  
E. T. Enikov ◽  
T. Makansi

SiGe alloys represent an important type of high-temperature semiconductor material for solid-state energy conversion. In the present study, the near-field radiative heat transfer between heavily doped SiGe plates is investigated. A dielectric function model is formulated based on the previously reported room-temperature mobility and temperature-dependent electric resistivity of several silicon-rich alloys with different doping type and concentration. The fluctuational electrodynamics is used to evaluate the near-field noncontact heat transfer coefficient. The variation of the heat transfer coefficient with doping concentration and temperature is explained according to the change in the optical constants and in the spectral distribution of the near-field heat flux.


2015 ◽  
Vol 138 (3) ◽  
Author(s):  
Peter Schreivogel ◽  
Michael Pfitzner

A new approach for steady-state heat transfer measurements is proposed. Temperature distributions are measured at the surface and a defined depth inside the wall to provide boundary conditions for a three-dimensional heat flux calculation. The practical application of the technique is demonstrated by employing a superposition method to measure heat transfer and film cooling effectiveness downstream of two different 0.75D deep narrow trench geometries and cylindrical holes. Compared to the cylindrical holes, both trench geometries lead to an augmentation of the heat transfer coefficient supposedly caused by the highly turbulent attached cooling film emanating from the trenches. Areas of high heat transfer are visible, where recirculation bubbles or large amounts of coolant are expected. Increasing the density ratio from 1.33 to 1.60 led to a slight reduction of the heat transfer coefficient and an increased cooling effectiveness. Both trenches provide a net heat flux reduction (NHFR) superior to that of cylindrical holes, especially at the highest momentum flux ratios.


Author(s):  
M. Hamayun Maqbool ◽  
Bjo¨rn Palm ◽  
R. Khodabandeh ◽  
Rashid Ali

Experiments have been performed to investigate heat transfer in a circular vertical mini channel made of stainless steel (AISI 316) with internal diameter of 1.70 mm and a uniformly heated length of 245 mm using ammonia as working fluid. The experiments are conducted for a heat flux range of 15 to 350 kW/m2 and mass flux range of 100 to 500 kg/m2s. The effects of heat flux, mass flux and vapour quality on the heat transfer coefficient are explored in detail. The experimental results show that the heat transfer coefficient increases with imposed wall heat flux while mass flux and vapour quality have no considerable effect. Experimental results are compared to predictive methods available in the literature for boiling heat transfer. The correlations of Cooper et al. [1] and Shah [3] are in good agreement with our experimental data.


1969 ◽  
Vol 91 (1) ◽  
pp. 27-36 ◽  
Author(s):  
B. S. Shiralkar ◽  
Peter Griffith

At slightly supercritical pressure and in the neighborhood of the pseudocritical temperature (which corresponds to the peak in the specific heat at the operating pressure), the heat transfer coefficient between fluid and tube wall is strongly dependent on the heat flux. For large heat fluxes, a marked deterioration takes place in the heat transfer coefficient in the region where the bulk temperature is below the pseudocritical temperature and the wall temperature above the pseudocritical temperature. Equations have been developed to predict the deterioration in heat transfer at high heat fluxes and the results compared with previously available results for steam. Experiments have been performed with carbon dioxide for additional comparison. Limits of safe operation for a supercritical pressure heat exchanger in terms of the allowable heat flux for a particular flow rate have been determined theoretically and experimentally.


2012 ◽  
Vol 188 ◽  
pp. 264-269
Author(s):  
Li Xin Qu ◽  
Yi Hong Zhou ◽  
Yao Ying Huang ◽  
Guo Qing Tang ◽  
Shao Wu Zhou

Most of the cracks on concrete dam are external ones, while external heat preservation is an important measure to prevent cracking. In order to obtain the actual thermal parameters, according to thermal conduction theory and the temperature distribution conditions of optical fiber on concrete surface, the surface temperature distribution of concrete pouring deck was real-time monitored by setting optical fiber in different depths; then the surface heat flux of mass concrete was calculated, thereby the equivalent surface heat transfer coefficient, which varied as time goes, was inversed. It is indicated that the inversion process is relatively simple and reliable, and the heat transfer coefficient obtained can well reflect the real performance of the insulation materials. Meanwhile, it is also indicated that the heat transfer coefficient of equivalent surface varies as time goes, which can contribute to back analysis calculation and actual engineering practice.


Author(s):  
S. Baldauf ◽  
M. Scheurlen ◽  
A. Schulz ◽  
S. Wittig

Heat transfer coefficients and the resulting heat flux reduction due to film cooling on a flat plate downstream a row of cylindrical holes are investigated. Highly resolved two dimensional heat transfer coefficient distributions were measured by means of infrared thermography and carefully corrected for local internal testplate conduction and radiation effects [1]. These locally acquired data are processed to lateral average heat transfer coefficients for a quantitative assessment. A wide range variation of the flow parameters blowing rate and density ratio as well as the geometrical parameters streamwise ejection angle and hole spacing is examined. The effects of these dominating parameters on the heat transfer augmentation from film cooling are discussed and interpreted with the help of highly resolved surface results of effectiveness and heat transfer coefficients presented earlier [2]. A new method of evaluating the heat flux reduction from film cooling is presented. From a combination of the lateral average of both the adiabatic effectiveness and the heat transfer coefficient, the lateral average heat flux reduction is processed according to the new method. The discussion of the total effect of film cooling by means of the heat flux reduction reveals important characteristics and constraints of discrete hole ejection. The complete heat transfer data of all measurements are used as basis for a new correlation of lateral average heat transfer coefficients. This correlation combines the effects of all the dominating parameters. It yields a prediction of the heat transfer coefficient from the ejection position to far downstream, including effects of extreme blowing angles and hole spacing. The new correlation has a modular structure to allow for future inclusion of additional parameters. Together with the correlation of the adiabatic effectiveness it provides an immediate determination of the streamwise heat flux reduction distribution of cylindrical hole film cooling configurations.


Sign in / Sign up

Export Citation Format

Share Document