scholarly journals WiMAX Cell Level Simulation Platform Based on ns-2 and DSP Integration

2010 ◽  
Vol 56 (2) ◽  
pp. 169-176 ◽  
Author(s):  
Adam Flizikowski ◽  
Rafał Kozik ◽  
Henryk Gierszal ◽  
Marcin Przybyszewski ◽  
Witold Hołubowicz

WiMAX Cell Level Simulation Platform Based on ns-2 and DSP IntegrationThe WiMAX (Worldwide Interoperability for Microwave Access) system based on the IEEE 802.16 family of standards is a promising technology for last-mile access. Both IEEE 802.16 and 3GPP-LTE systems candidate for becoming the 4G network of choice. The need to evaluate multiple performance enhancing techniques like MIMO, OFDM(A), novel channel coding schemes like non-binary LDPC codes, together with development of standards like IEEE 802.21, that aims at enabling handover and interoperability between heterogeneous network types, make rapid prototyping-based simulations an important issue. This paper presents a novel approach to 4G-oriented simulation environment that integrates popular network simulator (ns-2) and a Digital Signal Processing (DSP) to enable comprehensive link layer and cell level simulations. Proposed simulation environment is intended as an evaluation platform for assessing QoS/QoE and Connection Admission Control (CAC) algorithms designed for WiMAX systems. Moreover we study ways to improve simulation time (with focus on AWGN channel simulation) by using CUDA parallel processing technology for NVIDIA graphic cards.

Author(s):  
Supriya Raheja

Background: The extension of CPU schedulers with fuzzy has been ascertained better because of its unique capability of handling imprecise information. Though, other generalized forms of fuzzy can be used which can further extend the performance of the scheduler. Objectives: This paper introduces a novel approach to design an intuitionistic fuzzy inference system for CPU scheduler. Methods: The proposed inference system is implemented with a priority scheduler. The proposed scheduler has the ability to dynamically handle the impreciseness of both priority and estimated execution time. It also makes the system adaptive based on the continuous feedback. The proposed scheduler is also capable enough to schedule the tasks according to dynamically generated priority. To demonstrate the performance of proposed scheduler, a simulation environment has been implemented and the performance of proposed scheduler is compared with the other three baseline schedulers (conventional priority scheduler, fuzzy based priority scheduler and vague based priority scheduler). Results: Proposed scheduler is also compared with the shortest job first CPU scheduler as it is known to be an optimized solution for the schedulers. Conclusion: Simulation results prove the effectiveness and efficiency of intuitionistic fuzzy based priority scheduler. Moreover, it provides optimised results as its results are comparable to the results of shortest job first.


2017 ◽  
Vol 8 (23) ◽  
pp. 5966-5972 ◽  
Author(s):  
Alain C. Ngandjong ◽  
Alexis Rucci ◽  
Mariem Maiza ◽  
Garima Shukla ◽  
Jorge Vazquez-Arenas ◽  
...  

2017 ◽  
Vol 6 (4) ◽  
pp. 116 ◽  
Author(s):  
Wessam Mostafa ◽  
Eman Mohamed ◽  
Abdelhalim Zekry

Long Term Evolution Advanced (LTE-A) is the evolution of the LTE that developed by 3rd Generation Partnership Project (3GPP).LTE-A exceeded International Telecommunication Union (ITU) requirements for 4th Generation (4G) known as International Mobile Telecommunications (IMT-Advanced). It is formally introduced in October 2009. This paper presents a study and an implementation of the LTE-A downlink physical layer based on 3GPP release 10 standards using Matlab simulink. In addition, it provides the LTE-A performance in terms of Bit Error Rate (BER) against Signal to Noise Ratio (SNR) for different modulation and channel coding schemes. Moreover, different scenarios of Carrier Aggregation (CA) are modeled and implemented. The Simulink model developed for the LTE-A transceiver can be translated into digital signal processor DSP code or VHDL on FPGA code.


2016 ◽  
Vol 90 (20) ◽  
pp. 9018-9028 ◽  
Author(s):  
G. Martrus ◽  
A. Niehrs ◽  
R. Cornelis ◽  
A. Rechtien ◽  
W. García-Beltran ◽  
...  

ABSTRACTHIV-1 establishes a pool of latently infected cells early following infection. New therapeutic approaches aiming at diminishing this persisting reservoir by reactivation of latently infected cells are currently being developed and tested. However, the reactivation kinetics of viral mRNA and viral protein production, and their respective consequences for phenotypical changes in infected cells that might enable immune recognition, remain poorly understood. We adapted a novel approach to assess the dynamics of HIV-1 mRNA and protein expression in latently and newly infected cells on the single-cell level by flow cytometry. This technique allowed the simultaneous detection ofgagpolmRNA, intracellular p24 Gag protein, and cell surface markers. Following stimulation of latently HIV-1-infected J89 cells with human tumor necrosis factor alpha (hTNF-α)/romidepsin (RMD) or HIV-1 infection of primary CD4+T cells, four cell populations were detected according to their expression levels of viral mRNA and protein.gagpolmRNA in J89 cells was quantifiable for the first time 3 h after stimulation with hTNF-α and 12 h after stimulation with RMD, while p24 Gag protein was detected for the first time after 18 h poststimulation. HIV-1-infected primary CD4+T cells downregulated CD4, BST-2, and HLA class I expression at early stages of infection, proceeding Gag protein detection. In conclusion, here we describe a novel approach allowing quantification of the kinetics of HIV-1 mRNA and protein synthesis on the single-cell level and phenotypic characterization of HIV-1-infected cells at different stages of the viral life cycle.IMPORTANCEEarly after infection, HIV-1 establishes a pool of latently infected cells, which hide from the immune system. Latency reversal and immune-mediated elimination of these latently infected cells are some of the goals of current HIV-1 cure approaches; however, little is known about the HIV-1 reactivation kinetics following stimulation with latency-reversing agents. Here we describe a novel approach allowing for the first time quantification of the kinetics of HIV-1 mRNA and protein synthesis after latency reactivation orde novoinfection on the single-cell level using flow cytometry. This new technique furthermore enabled the phenotypic characterization of latently infected andde novo-infected cells dependent on the presence of viral RNA or protein.


2012 ◽  
Vol 239-240 ◽  
pp. 921-931
Author(s):  
Jian Zhang ◽  
Jun Zhong Zou ◽  
Lan Lan Chen ◽  
Chen Jie Zhao ◽  
Gui Song Wang

In this paper, an effective digital signal processing method based on the merger of the increasing and decreasing time-series sequences (MIDS) is introduced. On the basis of the merging of EEG signals, a new IED (Interictal Epileptiform Discharges) detection method is proposed. The first step of this new method is to establish a database by selecting peaked wave fragments. Then, the similarity between pending test fragment and peaked wave samples in the database is calculated. When the maximum similarity is greater than a certain threshold, the fragment is judged to be a peaked wave. Finally, the wave type i.e. spike wave, sharp wave, spike-and-slow wave or sharp-and-slow wave can be determined by whether there is a subsequent slow wave or not. Continuous sharp wave can be viewed as spike rhythm. In this research, 92 IED fragments from 4 suspected epilepsy patients are collected to establish the sample database. The proposed method was tested on EEG recordings from other 31 suspected patients. The results show that 98.11% of the IED fragments marked by doctors were detected. The experimental results show that this method performs well at IED detection in the clinical EEG data. The similarity is measured based on the comparison between fragments of different time length and can be viewed as a novel approach for the detection of typical EEG waveform. This research draws two conclusions: (1) the waveform of individual peaked wave is stable during 24-hour EEG recording process; (2) the database containing a small number peaked wave samples can be used to detect IED fragments.


Sign in / Sign up

Export Citation Format

Share Document