An Intuitionistic Fuzzy Based Novel Approach to CPU Scheduler

Author(s):  
Supriya Raheja

Background: The extension of CPU schedulers with fuzzy has been ascertained better because of its unique capability of handling imprecise information. Though, other generalized forms of fuzzy can be used which can further extend the performance of the scheduler. Objectives: This paper introduces a novel approach to design an intuitionistic fuzzy inference system for CPU scheduler. Methods: The proposed inference system is implemented with a priority scheduler. The proposed scheduler has the ability to dynamically handle the impreciseness of both priority and estimated execution time. It also makes the system adaptive based on the continuous feedback. The proposed scheduler is also capable enough to schedule the tasks according to dynamically generated priority. To demonstrate the performance of proposed scheduler, a simulation environment has been implemented and the performance of proposed scheduler is compared with the other three baseline schedulers (conventional priority scheduler, fuzzy based priority scheduler and vague based priority scheduler). Results: Proposed scheduler is also compared with the shortest job first CPU scheduler as it is known to be an optimized solution for the schedulers. Conclusion: Simulation results prove the effectiveness and efficiency of intuitionistic fuzzy based priority scheduler. Moreover, it provides optimised results as its results are comparable to the results of shortest job first.

Author(s):  
S. Vasuhi ◽  
A. Samydurai ◽  
Vijayakumar M.

In this paper, a novel approach is proposed to track humans for video surveillance using multiple cameras and video stitching techniques. SIFT key points are extracted from all camera inputs. Using k-d tree algorithm, all the key points are matched and random sample consensus (RANSAC) is used to identify the match correspondence among all the matched points. Homography matrix is calculated using four matched robust feature correspondences, the images are warped with respect to the other images, and the human tracking is performed on the stitched image. To identify the human in the stitched video, background modeling is performed using fuzzy inference system and perform foreground extraction. After foreground extraction, the blobs are constructed around each detected human and centroid point is calculated for each blob. Finally, tracking of multiple humans is done by Kalman filter (KF) with Hungarian algorithm.


Robotica ◽  
2021 ◽  
pp. 1-20
Author(s):  
Daegyun Choi ◽  
Anirudh Chhabra ◽  
Donghoon Kim

Summary This paper proposes an intelligent cooperative collision avoidance approach combining the enhanced potential field (EPF) with a fuzzy inference system (FIS) to resolve local minima and goal non-reachable with obstacles nearby issues and provide a near-optimal collision-free trajectory. A genetic algorithm is utilized to optimize parameters of membership function and rule base of the FISs. This work uses a single scenario containing all issues and interactions among unmanned aerial vehicles (UAVs) for training. For validating the performance, two scenarios containing obstacles with different shapes and several UAVs in small airspace are considered. Multiple simulation results show that the proposed approach outperforms the conventional EPF approach statistically.


2017 ◽  
Vol 6 (4) ◽  
pp. 17-33 ◽  
Author(s):  
Ashwani Kharola ◽  
Pravin P. Patil

This paper presents a fuzzy based adaptive control approach for stabilization of Two wheeled robot (TWR) system. The TWR consists of a robot chassis mounted on two movable wheels. The objective is to stabilize the proposed system within desired time, minimum overshoot and at desired location. The data samples collected from simulation results of fuzzy controllers were used for training, tuning and optimisation of an adaptive neuro fuzzy inference system(ANFIS) controller. A Matlab Simulink model of the system has been built using Newton's second law of motion. The effect of shape and number of membership functions on training error of ANFIS has also been analysed. The designing of fuzzy rules for both fuzzy and ANFIS controller were carried out using gbell shape memberships. Simulations were performed which compared and validated the performance of both the controllers.


2016 ◽  
Vol 73 (8) ◽  
pp. 1937-1953 ◽  
Author(s):  
Mehdi Komasi ◽  
Soroush Sharghi

Because of the importance of water resources management, the need for accurate modeling of the rainfall–runoff process has rapidly grown in the past decades. Recently, the support vector machine (SVM) approach has been used by hydrologists for rainfall–runoff modeling and the other fields of hydrology. Similar to the other artificial intelligence models, such as artificial neural network (ANN) and adaptive neural fuzzy inference system, the SVM model is based on the autoregressive properties. In this paper, the wavelet analysis was linked to the SVM model concept for modeling the rainfall–runoff process of Aghchai and Eel River watersheds. In this way, the main time series of two variables, rainfall and runoff, were decomposed to multiple frequent time series by wavelet theory; then, these time series were imposed as input data on the SVM model in order to predict the runoff discharge one day ahead. The obtained results show that the wavelet SVM model can predict both short- and long-term runoff discharges by considering the seasonality effects. Also, the proposed hybrid model is relatively more appropriate than classical autoregressive ones such as ANN and SVM because it uses the multi-scale time series of rainfall and runoff data in the modeling process.


2011 ◽  
Vol 221 ◽  
pp. 571-576
Author(s):  
Chun Tang Zhang ◽  
Zhen Zhu Yu

Aiming at rubber sulfuration of nonlinear, delay and complexity, a Fuzzy/PID compound control algorithm is proposed. The algorithm combined fuzzy inference system and PID algorithm, it has solved well the problem which is difficult to establish a precise mathematical model because of the uncertainties and complexities of rubber sulfuration. The simulation results indicate that the control algorithm is viable and effective.


Author(s):  
Dinh-Nhon Truong ◽  
Mi Sa Nguyen Thi ◽  
Van-Tri Bui ◽  
Thanh-Liem Tran

This paper presents comparative simulation results of a Microgrid (MG) system using a Static Var Compensator (SVC) for improving the voltage stability of the studied system. An Adaptive Neural Fuzzy Inference System (ANFIS) controller is designed based on the feedback signals to control the proposed SVC. For simplicity, the studied MG system can be modeled as an equivalent small scale wind turbine generator (WTG) combine with a Solar Photovoltaic (PV) and a Battery that connected to the common AC bus. A time-domain approach based on nonlinear model simulations is systematically performed. By observing the simulation results it can be concluded that the designed ANFIS controller for SVC can offer better damping characteristics of the studied MG system under severe operating conditions


Author(s):  
Rashmi Kumari ◽  
Anupriya Asthana ◽  
Vikas Kumar

Restoration of digital images degraded by impulse noise is still a challenge for researchers. Various methods proposed in the literature suffer from common drawbacks: such as introduction of artifacts and blurring of the images. A novel idea is proposed in this paper where presence of impulsive pixels are detected by ANFIS (Adaptive Neuro-Fuzzy Inference System) and mean of the median of suitable window size of noisy image is taken for the removal of the detected corrupted pixels. Experimental results show the effectiveness of the proposed restoration method both by qualitative and quantitative analysis.


2018 ◽  
pp. 863-880
Author(s):  
Ashwani Kharola ◽  
Pravin P. Patil

This paper presents a fuzzy based adaptive control approach for stabilization of Two wheeled robot (TWR) system. The TWR consists of a robot chassis mounted on two movable wheels. The objective is to stabilize the proposed system within desired time, minimum overshoot and at desired location. The data samples collected from simulation results of fuzzy controllers were used for training, tuning and optimisation of an adaptive neuro fuzzy inference system(ANFIS) controller. A Matlab Simulink model of the system has been built using Newton's second law of motion. The effect of shape and number of membership functions on training error of ANFIS has also been analysed. The designing of fuzzy rules for both fuzzy and ANFIS controller were carried out using gbell shape memberships. Simulations were performed which compared and validated the performance of both the controllers.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2269
Author(s):  
Ahmed F. Bendary ◽  
Almoataz Y. Abdelaziz ◽  
Mohamed M. Ismail ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
...  

In the last few decades, photovoltaics have contributed deeply to electric power networks due to their economic and technical benefits. Typically, photovoltaic systems are widely used and implemented in many fields like electric vehicles, homes, and satellites. One of the biggest problems that face the relatability and stability of the electrical power system is the loss of one of the photovoltaic modules. In other words, fault detection methods designed for photovoltaic systems are required to not only diagnose but also clear such undesirable faults to improve the reliability and efficiency of solar farms. Accordingly, the loss of any module leads to a decrease in the efficiency of the overall system. To avoid this issue, this paper proposes an optimum solution for fault finding, tracking, and clearing in an effective manner. Specifically, this proposed approach is done by developing one of the most promising techniques of artificial intelligence called the adaptive neuro-fuzzy inference system. The proposed fault detection approach is based on associating the actual measured values of current and voltage with respect to the trained historical values for this parameter while considering the ambient changes in conditions including irradiation and temperature. Two adaptive neuro-fuzzy inference system-based controllers are proposed: (1) the first one is utilized to detect the faulted string and (2) the other one is utilized for detecting the exact faulted group in the photovoltaic array. The utilized model was installed using a configuration of 4 × 4 photovoltaic arrays that are connected through several switches, besides four ammeters and four voltmeters. This study is implemented using MATLAB/Simulink and the simulation results are presented to show the validity of the proposed technique. The simulation results demonstrate the innovation of this study while proving the effective and high performance of the proposed adaptive neuro-fuzzy inference system-based approach in fault tracking, detection, clearing, and rearrangement for practical photovoltaic systems.


Sign in / Sign up

Export Citation Format

Share Document