Broadband Microwave Correlator of Noise Signals

2010 ◽  
Vol 17 (2) ◽  
pp. 289-298 ◽  
Author(s):  
Waldemar Susek ◽  
Bronisław Stec

Broadband Microwave Correlator of Noise SignalsA real narrowband noise signal representation in the form of an analytical signal in the Hilbert space is presented in the paper. This analytical signal is illustrated in a variable complex plane as a mark with defined amplitude, phase, pulsation and instantaneous frequency. A block diagram of a broadband product detector in a quadrature system is presented. Measurement results of an autocorrelation function of a noise signal are shown and the application of such solution in a noise radar for precise determination of distance changes as well as velocities of these changes are also presented. Conclusions and future plans for applications of the presented detection technique in broadband noise radars bring the paper to an end.

2013 ◽  
Vol 20 (3) ◽  
pp. 351-358
Author(s):  
Waldemar Susek ◽  
Bronisław Stec

Abstract The analysis of the autocorrelation function of a noise signal in a limited band of a microwave frequency range is described in the paper. On the basis of this analysis the static characteristic of the detector for object movement was found. The measurement results for the correlation function of noise signals are shown and the application of such solution in a noise radar for the precise determination of distance variations and the velocity of these changes is presented in the paper. The construction, working principle and measurement results for through-thewall noise radar demonstrator have been presented in the paper. A broadband noise signal in microwave S frequency band has been chosen, for high sensitivity getting. The broadband noise signal together with correlation receiver provides high sensitivity and moderate range for low transmitted power level. The experimental results obtained from 2.6-3.6 GHz noise-like waveform for the signal of a breathing human are presented. Conclusions and future plans for application of the presented detection technique in broadband noise radars conclude the paper


Author(s):  
Rommel Estores ◽  
Stefaan Verleye

Abstract In this paper the authors will discuss an application of Single Shot Logic (SSL) patterns used for further localizing IDDQ failures using ATPG constraints and targeted faults. This new method provides the analyst a possibility of performing circuit analysis using IDDQ measurement results as a pass/fail criterion rather than logic mismatches. Once a defective area was partially isolated through fault localization, SSL patterns were created to control individual internal node logic states in a deterministic way. IDDQ was measured at each SSL iteration where schematic analysis can further isolate the failure to a specific location. Two case studies will be discussed to show how this technique was used on actual failing units, with detailed explanation of the steps performed that led to a more precise determination of the fault location in the suspect cell.


2019 ◽  
Vol 85 (5) ◽  
pp. 11-17
Author(s):  
I. I. Chernikova ◽  
K. Y. Tumneva ◽  
T. Y. Bakaldina ◽  
T. N. Ermolaeva

A set of ICP-AES techniques has been developed for determination of rated elements: Ti, Si, R Al, Cu, Mo, V, Sn, and Zr in ferrotitanium; Ni, Fe, Cu, Co, and As in ferronickel; Si, Cr, and P in ferrochrome silicon; Zr, Si, Al, R and Cu in zirconium ferrosilicon; Mn, Si, and P in manganese ferrosilicon. Combination of the multi-element ICP-AES method which allows precise determination of the elements in ferroalloys in a wide range of concentrations and microwave sample preparation in closed autoclaves which excludes the loss of the components to be determined provides the rapidity of the analysis procedure. The composition of solutions for opening samples of ferroalloys and temperature-time modes of microwave sample preparation in an autoclave are substantiated. Conditions for ICP-AES determination of the rated elements in ferroalloys are studied. Analytical lines of the elements to be determined free from significant spectral overlaps are chosen. The dilution rates of the solutions are determined. The method of internal standard was used to improve the reproducibility of the analytical signal for Ti determination in ferrotitanium, Si and Cr in ferrochrome silicon, as well as all rated elements in manganese ferrosilicon and ferronickel. The spectrometer was calibrated using model solutions and solutions of standard samples added with the certified solutions of the elements to be determined. To determine Ti, Si, FJ Al, Cu, У and Zr in ferrotitanium; Ni, Fe, Cu, and Co in ferronickel; Si, Cr, and P in ferrochrome silicon; Zr, Si, Al, P, and Cu in zirconium ferrosilicon; Si and P in manganese ferrosilicon a multidimensional graduation by two analytical lines was used. The correctness of the determination was evaluated in analysis of standard samples of ferroalloys and comparative analysis of the obtained results with the data of standard methods: comparison of the variances according to the Fisher criterion did not reveal any significant difference between them, whereas the use of the modified Student test showed the absence of the systematic error.


Author(s):  
В. Г. Здоренко ◽  
С. В. Барилко ◽  
С. М. Лісовець ◽  
Д. О. Шипко

Purpose. Ensuring the determination of the basis weight of the textile fiber mass directly during the manufacturing process using an ultrasonic device equipped with non-contact ultrasonic sensors. In particular, show the effect of the basis weight of a textile fiber mass on the amplitude of probing vibrations in the measuring channel of an ultrasonic device. An amplitude control method is proposed, which is the basis of the operation of the ultrasonic device. It consists in irradiating the textile fiber mass, which moves relative to the scanning bracket with the sensors, and determining the basis weight of the fiber mass by reducing the amplitude of the ultrasonic waves in the measuring channel. The measurement results are processed with their subsequent digitization and computer analysis. It has been established that due to the passage and re-reflection of ultrasonic waves, which fall on two receivers with different vibration delays, it is possible to increase the accuracy of measurements of the average values of the basis weight of the textile fiber mass. Originality. In the general case, it is established that by passing and reflecting ultrasonic waves entering two receivers with different delay of oscillations, it is possible to increase the accuracy of measurements of average values of basis weight of textile fiber mass. The block diagram of the ultrasonic device for determination of basis weight of textile fiber mass is shown and its work is described. The main dependences on which the device system will determine the basis weight of the textile fiber mass are also given.


2013 ◽  
Vol 58 (3) ◽  
pp. 919-922 ◽  
Author(s):  
K. Granat ◽  
B. Opyd ◽  
D. Nowak ◽  
M. Stachowicz ◽  
G. Jaworski

Abstract The paper describes preliminary examinations on establishing usefulness criteria of foundry tooling materials in the microwave heating technology. Presented are measurement results of permittivity and loss tangent that determine behaviour of the materials in electromagnetic field. The measurements were carried-out in a waveguide resonant cavity that permits precise determination the above-mentioned parameters by perturbation technique. Examined were five different materials designed for use in foundry tooling. Determined was the loss factor that permits evaluating usefulness of materials in microwave heating technology. It was demonstrated that the selected plastics meet the basic criterion that is transparency for electromagnetic radiation.


2018 ◽  
Vol 84 (11) ◽  
pp. 9-14
Author(s):  
E. S. Koshel ◽  
V. B. Baranovskaya ◽  
M. S. Doronina

The analytical capabilities of arc atomic emission determination of As, Bi, Sb, Cu, Te in rare earth metals (REM) and their oxides after preparatory group concentration using S,N-containing heterochain polymer sorbent are studied on a high-resolution spectrometer “Grand- Extra” (“WMC-Optoelectron-ics” company, Russia). Sorption kinetics and dependence of the degree of the impurity extraction on the solution acidity are analyzed to specify conditions of sorption concentration. To optimize the procedure of arc atomic emission determination of As, Bi, Sb, Cu, and Te various schemes of their sorption preconcentration and subsequent processing of the resulted concentrate with the addition of a collector at different stages of the sorption process have been considered. Graphite powder is used as a collector in analysis of rare earth oxides due to universality and relative simplicity of the emission spectrum. Conditions of analysis and parameters of the spectrometer that affect the analytical signal (mass and composition of the sample, shape and size of the electrodes, current intensity and generator operation mode, interelectrode spacing, wavelengths of the analytical lines) are chosen. The evaporation curves of the determinable impurities were studied and the exposure time of As, Bi, Sb, Cu, and Te in the resulted sorption concentrate was determined. Correctness of the obtained results was evaluated using standard samples of the composition and in comparisons between methods. The results of the study are used to develop a method of arc chemical-atomic emission analysis of yttrium, gadolinium, neodymium, europium, scandium and their oxides in a concentration range of n x (10-2 - 10-5) wt.%.


2010 ◽  
Vol 46 (4) ◽  
pp. 411-417 ◽  
Author(s):  
Yang MENG ◽  
Lin GU ◽  
Wenzheng ZHANG

2020 ◽  
Vol 16 (7) ◽  
pp. 872-879
Author(s):  
Samin Hamidi

Background: Abuse of drugs is associated with several medical, forensic, toxicology and social challenges. “Drugs of abuse” testing is therefore an important issue. Objective: We propose a simple CE-based method for the quantification of amphetamine, codeine and morphine after direct injection of Exhaled Breath Condensate (EBC) by the aid of simple stacking mode and an off-line pre-concentration method. Methods: Using graphene oxide adsorbents, amphetamine, codeine and morphine were extracted from EBC in order to eliminate the proteins and other interferences. In addition to off-line method, an online stacking mode was applied to improve the analytical signal obtained from the instrument. Results: The validation parameters were experimented on the developed method based on the FDA guideline over concentration ranges of 12.5-100, 30-500 and 10-1250 ng/mL associated with amphetamine, codeine and morphine, respectively. Small volumes (around 100 μL) of EBC were collected using a lab-made setup and successfully analyzed using the proposed method where precisions and accuracies (within day and between days) were in accordance with the guideline (recommended less than 15 % for biological samples). The recovery tests were used to evaluate the matrix effect and data (94 to 105 %) showed that the proposed method can be applied in different EBC matrix samplings of subjects. Conclusion: The proposed method is superior for simultaneous determination of amphetamine, codeine and morphine over chromatographic analyses because it is fast and consumes fewer chemicals, with no derivatization step.


Sign in / Sign up

Export Citation Format

Share Document