scholarly journals Design and Analysis of A Vortex Induced Vibration Based Oscillating Free Stream Energy Converter

2021 ◽  
pp. 112-117
Author(s):  
Ratan Kumar Das ◽  
Muhammad Taharat Galib

The Kármán Vortex Shedding is one of the special types of vortex that is generated from asymmetric flow separation. For many years engineers tried to suppress the vortex shedding as it brings unnecessary motion to the static members inside the flow field. A converter model is designed and studied to harness the energy associated with this vortex shedding and convert it into usable form rather than suppressing it. It is a bluff body placed on the free stream incurring vortex-induced vibration and giving out a swinging pendulum motion. This motion is utilized to produce electricity. The model is analyzed on the free stream of water and conversion efficiency of 8.9% is achieved. A theoretical formula is derived regarding the force acting on the bluff body during the motion. Various parameters such as aspect ratio, flow velocity, lock-in delay, frequency of oscillation, etc. as well as their relations are studied by simulating the model in ANSYS FLUENT 18.1 for different configurations. From the simulated results it is obvious that as the lift force on the bluff body increases, more power generation is possible. Also, the experimental results paved the way for further study for practical large-scale implementation of the converter.

2015 ◽  
Vol 144 (1) ◽  
pp. 139-148 ◽  
Author(s):  
Junshi Ito ◽  
Hiroshi Niino

Abstract A mesoscale atmospheric numerical model is used to simulate two cases of Kármán vortex shedding in the lee of Jeju Island, South Korea, in the winter of 2013. Observed cloud patterns associated with the Kármán vortex shedding are successfully reproduced. When the winter monsoon flows out from the Eurasian continent, a convective mixed layer develops through the supply of heat and moisture from the relatively warm Yellow Sea and encounters Jeju Island and dynamical conditions favorable for the formation of lee vortices are realized. Vortices that form behind the island induce updrafts to trigger cloud formation at the top of the convective boundary layer. A sensitivity experiment in which surface drag on the island is eliminated demonstrates that the formation mechanism of the atmospheric Kármán vortex shedding is different from that behind a bluff body in classical fluid mechanics.


Author(s):  
Lokanna Hoskoti ◽  
Ajay Misra ◽  
Mahesh Manchakattil Sucheendran

The vortex-induced vibration (VIV) of a rotating blade is studied in this paper. Euler-Bernoulli beam equation and the nonlinear oscillator satisfying Van der Pol equation are used to model the rotating blade and vortex shedding, respectively. While the fluctuating lift due to vortex shedding acts on the blade and the blade is coupled with fluid through a linear inertial coupling, resulting in a fluid-structure interaction problem. The coupled equations are discretized by using modes which satisfy the Eigenvalue problem. The work attempts to understand the instabilities associated with the frequency lock-in phenomenon. The method of multiscale is used to obtain the frequency response equation and frequency bifurcation diagrams of the coupled system. They are obtained for the primary (1:1) resonance for different values of the coupling parameter. The stability of the solution is presented by examining the nature of the Eigenvalues of the Jacobian matrix.


2003 ◽  
Vol 125 (1) ◽  
pp. 97-108 ◽  
Author(s):  
Tsutomu Kawamura ◽  
Toshitsugu Nakao ◽  
Masanori Takahashi ◽  
Masaaki Hayashi ◽  
Kouichi Murayama ◽  
...  

Synchronized vibrations of a circular cylinder in a water cross flow at supercritical Reynolds numbers were measured. Turbulence intensities were varied to investigate the effect of the Strouhal number on the synchronization range. Self-excited vibration in the drag direction due to symmetrical vortex shedding began only when the Strouhal number was about 0.29, at a reduced velocity of 1.1. The reduced velocities at the beginning of lock-in vibrations caused by Karman vortex shedding decreased from 1.5 to 1.1 in the drag direction and from 2.7 to 2.2 in the lift direction, as the Strouhal number increased from 0.29 to 0.48.


2011 ◽  
Vol 18 (3) ◽  
pp. 361-370 ◽  
Author(s):  
Grzegorz Pankanin

What is the Role of the Stagnation Region in Karman Vortex Shedding?This paper is devoted to the problem of the appearance of a stagnation region during Karman vortex shedding. This particular phenomenon has been addressed by G. Birkhoff in his model of vortices generation. Experimental results obtained by various research methods confirm the existence of a stagnation region. The properties of this stagnation region have been described based on experimental findings involving flow visualisation and hot-wire anemometry. Special attention has been paid to the relationship between the existence of a slit in the bluff body and the size of the stagnation region. The slit takes over the role of the stagnation region as an information channel for generating vortices.


Author(s):  
Kristin Lai-Fook Cody ◽  
Stephen A. Hambric ◽  
Martin L. Pollack ◽  
Michael L. Jonson

Lock-in occurs between many different types of flow instabilities and structural-acoustic resonators. Factors that describe the coupling between the fluid and structure have been defined for low flow Mach numbers. This paper discusses how different flow instabilities influence lock-in experimentally and analytically. A key concept to the lock-in process is the relative source generation versus dissipation. The type of fluid instability source dominates the generation component of the process, so a comparison between a cavity shear layer instability with a relatively stronger source, for example wake vortex shedding from a bluff body, will be described as a coupling factor. In the fluid-elastic cavity lock-in case, the shear layer instability produced by flow over a cavity couples to the elastic structure containing the cavity. In this study, this type of lock-in was not achieved experimentally. A stronger source, vortex shedding from a bluff body however, is shown experimentally to locks into the same resonator. This study shows that fluid-elastic cavity lock-in is unlikely to occur given the critical level of damping that exists for a submerged structure and the relatively weak source strength that a cavity produces. Also in this paper, a unified theory is presented based on describing functions, a nonlinear control theory used to predict limit cycles of oscillation, where a self-sustaining oscillation or lock-in is possible. The describing function models capture the primary characteristics of the instability mechanisms, are consistent with Strouhal frequency concepts, capture damping, and are consistent with mass-damping concepts from wake oscillator theory. This study shows a strong consistency between the analytical models and experimental results.


2019 ◽  
Vol 872 ◽  
pp. 115-146
Author(s):  
Abraham Benjamin Britto ◽  
Sathesh Mariappan

An analytical investigation is performed to understand the lock-in phenomenon, observed in vortex shedding combustors. Several aeroengine afterburners and ramjets use a bluff body to stabilize the flame. The bluff body sheds vortices. During the occurrence of high-amplitude combustion instability, the frequency of vortex shedding locks in to the frequency of the chamber acoustic field. This phenomenon is termed vortex-acoustic lock-in. In general, there is a two-way coupling between the vortex shedding process and the acoustic field, making analytical investigation difficult. Since the frequency of the latter remains largely unaltered, performing an investigation to study the response of vortex shedding to external excitation not only allows one to gain insights, but also make the problem analytically tractable. We begin with a lower-order model available in the literature to describe the vortex shedding process in non-reacting flows, arising from sharp corners in the presence of upstream velocity excitation. The continuous time domain model is transformed to a discrete map, which connects the time instances of two successive vortex shedding events. The frequency and amplitude of excitation are varied to study the instantaneous vortex shedding time period, as the response of the system. In the absence of forcing, the iterates of the map form a period-1 solution with the frequency equalling the natural vortex shedding frequency. On increasing the amplitude of excitation, quasi-periodic behaviour of the iterates is observed, followed by a period-1 lock-in solution, where vortex shedding occurs at the excitation frequency. On further increasing the amplitude, de-lock-in occurs. From the map, an analytical solution is extracted, which represents the lock-in state. The condition and thereby the region in the frequency–amplitude parameter space where a general$p:1$lock-in occurs is then identified. Several important analytical expressions, such as for (1) critical threshold frequency above which lock-in occurs, (2) boundary of lock-in region in the parameter space, that are of direct importance to the design of quieter combustors are obtained. The study also identifies the transition of higher-order$p:1$to$1:1$lock-in state, through a series of lock-in and de-lock-in steps, whose occurrence could be verified from future experiments.


2020 ◽  
Vol 20 (09) ◽  
pp. 2050105
Author(s):  
Chen Fang ◽  
Zewen Wang ◽  
Haojun Tang ◽  
Yongle Li ◽  
Zhouquan Deng

With the increasing span of suspension bridges, the towers have higher heights and have become more flexible, and so do the nearby suspenders. Not only are the towers easy to be affected by winds, but also the nearby suspenders by the wake flow of the towers. To enhance the structural stiffness, a bridge tower may be designed with more columns, but this design may lead to strong aerodynamic interference among the columns, complicating the wind-induced behaviors of the tower and nearby suspenders. In this paper, wind tunnel tests and numerical simulations were carried out to investigate the vortex-induced vibration of a tall bridge tower with four columns, and the wake effects on nearby suspenders. The results show that the displacement response at the tower top increases with the increasing wind speed. No obvious lock-in region is observed, as different cross-sections of the tower show different vortex shedding characteristics. The vortex shedding characteristics are determined mainly by the aerodynamic forces acting on the leeward columns. In the wake of the tower, the aerodynamic forces of the suspenders have the same dominant frequencies as the shedding frequencies of the vortices from the tower. The frequencies may approach the natural frequencies of the suspenders, causing possible wake-induced vibration that should be avoided for a good design.


2020 ◽  
Vol 8 (5) ◽  
pp. 365
Author(s):  
Li Zou ◽  
Kun Wang ◽  
Yichen Jiang ◽  
Aimin Wang ◽  
Tiezhi Sun

Owing to the rapid development of the offshore wind power technology and increasing capacity of wind turbines, vertical-axis wind turbines (VAWTs) have experienced a great development. Nevertheless, the VAWT wake effect, which affects the power generation efficiency and rotor fatigue life, has not been thoroughly understood. In this study, the mid-span wake measurements on a VAWT in six different configurations were conducted. This study aimed to investigate the effect of solidity on near wake instability of vertical-axis wind turbine. By using the wavelet analysis method to analyse the measured velocity (or pressure) time series signals on a multi-scale and with multi-resolution, the dynamic characteristics of the coherent vortex structures in the wake evolution process were determined. The results show that with increasing solidity, the VAWT wake develops into a bluff body wake mode. In addition, a characteristic frequency that is lower than the low-frequency large-scale vortex shedding frequency occur. The wavelet transform was used to decompose and reconstruct the measured data, and the relationship between the low-frequency large-scale vortex shedding and lower frequency pulsation was established. The results provide important data for numerical modelling and new insights into the physical mechanism of the VAWT wake evolution into a bluff body wake.


Sign in / Sign up

Export Citation Format

Share Document