scholarly journals Effects of antibiotics on acquired immunity in vivo – current state of knowledge

2012 ◽  
Vol 15 (3) ◽  
pp. 583-588 ◽  
Author(s):  
M. Pomorska-Mól ◽  
Z. Pejsak

AbstractAntibiotics are widely used in the therapy of infections. Besides the respective interactions between antibiotics and pathogens it seems that antibiotics also directly interact with the immune system. Some commonly used antibiotics are currently known to have effects on the innate immune response, as shown byin vitro, ex vivoand alsoin vivoanimal experiments and clinical studies. Most of the experimental papers published to date, as well as most reviews, relate to how antibiotics affect the innate immune response or non-specific monocyte or lymphocyte proliferation. However the effects of antibiotics on the adaptive immune response are still not well characterized. This review of the literature considering differentin vivoexperiments indicate the real importance of interrelations existing between acquired immune responses and antibiotics, however, the mechanism of immunomodulatory effects of antibiotics are still poorly understood. Currently, data on the immunomodulating effects of antibiotics often remain heterogeneous, contradictory or insufficient, but most results published to date revealed the immunosuppressive effect of antibiotics on the antigen- specific immune responsein vivo. In pigs as well as in poultry herds, it is not uncommon practice to add antibiotics to drinking water or feed at the time of vaccination. Information on the effects of such practices on the immune system of animals is restricted and morein vivostudies are needed to investigate the effects of antimicrobial drugs on the immune system, especially in the field conditions.

2020 ◽  
Vol 88 (6) ◽  
Author(s):  
Jenessa A. Winston ◽  
Alissa J. Rivera ◽  
Jingwei Cai ◽  
Rajani Thanissery ◽  
Stephanie A. Montgomery ◽  
...  

ABSTRACT Clostridioides difficile infection (CDI) is associated with increasing morbidity and mortality posing an urgent threat to public health. Recurrence of CDI after successful treatment with antibiotics is high, thus necessitating discovery of novel therapeutics against this enteric pathogen. Administration of the secondary bile acid ursodeoxycholic acid (UDCA; ursodiol) inhibits the life cycles of various strains of C. difficile in vitro, suggesting that the FDA-approved formulation of UDCA, known as ursodiol, may be able to restore colonization resistance against C. difficile in vivo. However, the mechanism(s) by which ursodiol is able to restore colonization resistance against C. difficile remains unknown. Here, we confirmed that ursodiol inhibits C. difficile R20291 spore germination and outgrowth, growth, and toxin activity in a dose-dependent manner in vitro. In a murine model of CDI, exogenous administration of ursodiol resulted in significant alterations in the bile acid metabolome with little to no changes in gut microbial community structure. Ursodiol pretreatment resulted in attenuation of CDI pathogenesis early in the course of disease, which coincided with alterations in the cecal and colonic inflammatory transcriptome, bile acid-activated receptors nuclear farnesoid X receptor (FXR) and transmembrane G-protein-coupled membrane receptor 5 (TGR5), which are able to modulate the innate immune response through signaling pathways such as NF-κB. Although ursodiol pretreatment did not result in a consistent decrease in the C. difficile life cycle in vivo, it was able to attenuate an overly robust inflammatory response that is detrimental to the host during CDI. Ursodiol remains a viable nonantibiotic treatment and/or prevention strategy against CDI. Likewise, modulation of the host innate immune response via bile acid-activated receptors FXR and TGR5 represents a new potential treatment strategy for patients with CDI.


2021 ◽  
Vol 29 (3) ◽  
pp. 255-269
Author(s):  
Adina Huțanu ◽  
Anca Meda Georgescu ◽  
Akos Vince Andrejkovits ◽  
William Au ◽  
Minodora Dobreanu

Abstract The innate immune system is mandatory for the activation of antiviral host defense and eradication of the infection. In this regard, dendritic cells, natural killer cells, macrophages, neutrophils representing the cellular component, and cytokines, interferons, complement or Toll-Like Receptors, representing the mediators of unspecific response act together for both activation of the adaptive immune response and viral clearance. Of great importance is the proper functioning of the innate immune response from the very beginning. For instance, in the early stages of viral infection, the defective interferon response leads to uncontrolled viral replication and pathogen evasion, while hypersecretion during the later stages of infection generates hyperinflammation. This cascade activation of systemic inflammation culminates with cytokine storm syndrome and hypercoagulability state, due to a close interconnection between them. Thus an unbalanced reaction, either under- or over- stimulation of the innate immune system will lead to an uncoordinated response and unfavorable disease outcomes. Since both cellular and humoral factors are involved in the time-course of the innate immune response, in this review we aimed to address their gradual involvement in the antiviral response with emphasis on key steps in SARS-CoV-2 infection.


2021 ◽  
Vol 41 ◽  
pp. 756-773
Author(s):  
LA van Dijk ◽  
◽  
F de Groot ◽  
H Yuan ◽  
C Campion ◽  
...  

Proper regulation of the innate immune response to bone biomaterials after implantation is pivotal for successful bone healing. Pro-inflammatory M1 and anti-inflammatory M2 macrophages are known to have an important role in regulating the healing response to biomaterials. Materials with defined structural and topographical features have recently been found to favourably modulate the innate immune response, leading to improved healing outcomes. Calcium phosphate bone grafts with submicron-sized needle-shaped surface features have been shown to trigger a pro-healing response through upregulation of M2 polarised macrophages, leading to accelerated and enhanced bone regeneration. The present review describes the recent research on these and other materials, all the way from benchtop to the clinic, including in vitro and in vivo fundamental studies, evaluation in clinically relevant spinal fusion models and clinical validation in a case series of 77 patients with posterolateral and/or interbody fusion in the lumbar and cervical spine. This research demonstrates the feasibility of enhancing biomaterial-directed bone formation by modulating the innate immune response through topographic surface features.


Viruses ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 816 ◽  
Author(s):  
Katie J. Knapek ◽  
Hanah M. Georges ◽  
Hana Van Campen ◽  
Jeanette V. Bishop ◽  
Helle Bielefeldt-Ohmann ◽  
...  

Bovine Viral Diarrhea Virus (BVDV) fetal infections occur in two forms; persistent infection (PI) or transient infection (TI), depending on what stage of gestation the fetus is infected. Examination of lymphoid organs from both PI and TI fetuses reveals drastically different fetal responses, dependent upon the developmental stage of the fetal immune system. Total RNA was extracted from the thymuses and spleens of uninfected control, PI, and TI fetuses collected on day 190 of gestation to test the hypothesis that BVDV infection impairs the innate and adaptive immune response in the fetal thymus and spleen of both infection types. Transcripts of genes representing the innate immune response and adaptive immune response genes were assayed by Reverse Transcription quatitative PCR (RT-qPCR) (2−ΔΔCq; fold change). Genes of the innate immune response, interferon (IFN) inducible genes, antigen presentation to lymphocytes, and activation of B cells were downregulated in day 190 fetal PI thymuses compared to controls. In contrast, innate immune response genes were upregulated in TI fetal thymuses compared to controls and tended to be upregulated in TI fetal spleens. Genes associated with the innate immune system were not different in PI fetal spleens; however, adaptive immune system genes were downregulated, indicating that PI fetal BVDV infection has profound inhibitory effects on the expression of genes involved in the innate and adaptive immune response. The downregulation of these genes in lymphocytes and antigen-presenting cells in the developing thymus and spleen may explain the incomplete clearance of BVDV and the persistence of the virus in PI animals while the upregulation of the TI innate immune response indicates a more mature immune system, able to clear the virus.


2019 ◽  
Vol 20 (15) ◽  
pp. 1236-1243 ◽  
Author(s):  
Hernández-Ramos Reyna-Margarita ◽  
Castillo-Maldonado Irais ◽  
Rivera-Guillén Mario-Alberto ◽  
Ramírez-Moreno Agustina ◽  
Serrano-Gallardo Luis-Benjamín ◽  
...  

Background: The immune system is responsible for providing protection to the body against foreign substances. The immune system divides into two types of immune responses to study its mechanisms of protection: 1) Innate and 2) Adaptive. The innate immune response represents the first protective barrier of the organism that also works as a regulator of the adaptive immune response, if evaded the mechanisms of the innate immune response by the foreign substance the adaptive immune response takes action with the consequent antigen neutralization or elimination. The adaptive immune response objective is developing a specific humoral response that consists in the production of soluble proteins known as antibodies capable of specifically recognizing the foreign agent; such protective mechanism is induced artificially through an immunization or vaccination. Unfortunately, the immunogenicity of the antigens is an intrinsic characteristic of the same antigen dependent on several factors. Conclusion: Vaccine adjuvants are chemical substances of very varied structure that seek to improve the immunogenicity of antigens. The main four types of adjuvants under investigation are the following: 1) Oil emulsions with an antigen in solution, 2) Pattern recognition receptors activating molecules, 3) Inflammatory stimulatory molecules or activators of the inflammasome complex, and 4) Cytokines. However, this paper addresses the biological plausibility of two phytochemical compounds as vaccine adjuvants: 5) Lectins, and 6) Plant phenolics whose characteristics, mechanisms of action and disadvantages are addressed. Finally, the immunological usefulness of these molecules is discussed through immunological data to estimate effects of plant phenolics and lectins as vaccine adjuvants, and current studies that have implanted these molecules as vaccine adjuvants, demonstrating the results of this immunization.


2011 ◽  
Vol 79 (4) ◽  
pp. 1546-1558 ◽  
Author(s):  
Dmitry A. Soloviev ◽  
Samir Jawhara ◽  
William A. Fonzi

ABSTRACTCandida albicansis a common opportunistic fungal pathogen and is the leading cause of invasive fungal diseases in immunocompromised individuals. The induction of cell-mediated immunity toC. albicansis one of the main tasks of cells of the innate immune system, andin vitroevidence suggests that integrin αMβ2(CR3, Mac-1, and CD11b/CD18) is the principal leukocyte receptor involved in recognition of the fungus. Using αMβ2-KO mice and mutated strains ofC. albicansin two models of murine candidiasis, we demonstrate that neutrophils derived from mice deficient in αMβ2have a reduced ability to killC. albicansand that the deficient mice themselves exhibit increased susceptibility to fungal infection. Disruption of thePRA1gene ofC. albicans, the primary ligand for αMβ2, protects the fungus against leukocyte killingin vitroandin vivo, impedes the innate immune response to the infection, and increases fungal virulence and organ invasionin vivo. Thus, recognition of pH-regulated antigen 1 protein (Pra1p) by αMβ2plays a pivotal role in determining fungal virulence and host response and protection againstC. albicansinfection.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Linda A. C. Hamers ◽  
Matthijs Kox ◽  
Rob J. W. Arts ◽  
Bastiaan Blok ◽  
Jenneke Leentjens ◽  
...  

Bacille Calmette-Guérin (BCG) vaccine exerts nonspecific immunostimulatory effects and may therefore represent a novel therapeutic option to treat sepsis-induced immunoparalysis. We investigated whether BCG vaccination modulates the systemic innate immune response in humansin vivoduring experimental endotoxemia. We used inactivated gamma-irradiated BCG vaccine because of the potential risk of disseminated disease with the live vaccine in immunoparalyzed patients. In a randomized double-blind placebo-controlled study, healthy male volunteers were vaccinated with gamma-irradiated BCG (n=10) or placebo (n=10) and received 1 ng/kg lipopolysaccharide (LPS) intravenously on day 5 after vaccination to assess thein vivoimmune response. Peripheral blood mononuclear cells were stimulated with various related and unrelated pathogens 5, 8 to 10, and 25 to 35 days after vaccination to assessex vivoimmune responses. BCG vaccination resulted in a scar in 90% of vaccinated subjects. LPS administration elicited a profound systemic immune response, characterized by increased levels of pro- and anti-inflammatory cytokines, hemodynamic changes, and flu-like symptoms. However, BCG modulated neither thisin vivoimmune response, norex vivoleukocyte responses at any time point. In conclusion, gamma-irradiated BCG is unlikely to represent an effective treatment option to restore immunocompetence in patients with sepsis-induced immunoparalysis. This trial is registered withNCT02085590.


2007 ◽  
Vol 88 (7) ◽  
pp. 1917-1921 ◽  
Author(s):  
Graham C. Froggatt ◽  
Geoffrey L. Smith ◽  
Philippa M. Beard

The Vaccinia virus BTB/kelch protein F3 has been characterized and its effects on virus replication in vitro and virus virulence in vivo have been determined. The loss of the F3L gene had no effect on virus growth, plaque phenotype or cytopathic effect in cell culture under the conditions tested. However, the virulence of a virus lacking F3L in an intradermal model was reduced compared with controls, and this was demonstrated by a significantly smaller lesion and alterations to the innate immune response to infection. The predicted molecular mass of the F3 protein is 56 kDa; however, immunoblotting of infected cell lysates using an antibody directed against recombinant F3 revealed two proteins of estimated sizes 37 and 25 kDa.


Blood ◽  
2010 ◽  
Vol 116 (4) ◽  
pp. 625-627 ◽  
Author(s):  
Janesh Pillay ◽  
Ineke den Braber ◽  
Nienke Vrisekoop ◽  
Lydia M. Kwast ◽  
Rob J. de Boer ◽  
...  

Abstract Neutrophils are essential effector cells of the innate immune response and are indispensable for host defense. Apart from their antimicrobial functions, neutrophils inform and shape subsequent immunity. This immune modulatory functionality might however be considered limited because of their generally accepted short lifespan (< 1 day). In contrast to the previously reported short lifespans acquired by ex vivo labeling or manipulation, we show that in vivo labeling in humans with the use of 2H2O under homeostatic conditions showed an average circulatory neutrophil lifespan of 5.4 days. This lifespan is at least 10 times longer than previously reported and might lead to reappraisal of novel neutrophil functions in health and disease.


Sign in / Sign up

Export Citation Format

Share Document