scholarly journals A New Type of Current Conveyor and its Application in Fully Balanced Differential Current-Mode Elliptic Filter Design

2011 ◽  
Vol 62 (3) ◽  
pp. 126-133 ◽  
Author(s):  
Qiujing Zhang ◽  
Chunhua Wang ◽  
Jingru Sun ◽  
Sichun Du

A New Type of Current Conveyor and its Application in Fully Balanced Differential Current-Mode Elliptic Filter Design This paper introduces a new type of CMOS-based current conveyor: current controlled fully balanced second generation current conveyor (CFBCCII) element which has a pair of differential Y terminals, a pair of differential X terminals and two pairs of Z terminals. The proposed circuit offers electronic tuning possibilities by means of a current adjustable intrinsic resistance at its X terminal. An elliptic filter realization is described as an example for its application in a current-mode fully balanced filter design, where the intrinsic resistors in CFBCCIIs are used for the electronic tuning of the characteristic filter frequency.

2021 ◽  
Vol 25 (2) ◽  
pp. 65-76
Author(s):  
Tajinder Singh Arora ◽  

This research article explores the possible applications of voltage differencing current conveyor (VDCC), as a current mode universal filter and a sinusoidal oscillator. Without the need for an additional active/passive element, a very simple hardware modification makes it a dual-mode quadrature oscillator from the filter configuration. Both the proposed circuit requires only two VDCC and all grounded passive elements, hence a preferable choice for integration. The filter has some desirable features such as availability of all five explicit outputs, independent tunability of filter parameters. Availability of explicit quadrature current outputs, independence in start and frequency of oscillations, makes it a better oscillator design. Apart from prevalent CMOS simulation results, VDCC is also realized and experimentally tested using the off-the-shelf integrated circuit. All the pen and paper analysis such as non-ideal, sensitivity and parasitic analysis supports the design.


2000 ◽  
Vol 87 (2) ◽  
pp. 163-175 ◽  
Author(s):  
Frank Dudek ◽  
Bashir Al-Hashimi ◽  
Mansour Moniri

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Neeta Pandey ◽  
Sajal K. Paul

A universal voltage-mode filter (VM) and a current-mode filter (CM) based on recently proposed active building block, namely, differential voltage current conveyor transconductance amplifier (DVCCTA) are proposed. Both the circuits use a single DVCCTA, two capacitors, and a single resistor. The filters enjoy low-sensitivity performance and low component spread and exhibit electronic tunability of filter parameters via bias currents of DVCCTA. SPICE simulation using 0.25 μm TSMC CMOS technology parameters is included to show the workability of the proposed circuits.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Neeta Pandey ◽  
Sajal K. Paul

A new active building block for analog signal processing, namely, differential difference current conveyor transconductance amplifier (DDCCTA), is presented, and performance is checked through PSPICE simulations which show the usability of the proposed element is up to 201 MHz. The proposed block is implemented using 0.25 μm TSMC CMOS technology. Some of the applications are presented using the proposed DDCCTA, namely, a voltage mode multifunction filter, a current mode universal filter, an oscillator, current and voltage amplifiers, and grounded inductor simulator. The feasibility of DDCCTA and its applications is confirmed via PSPICE simulations.


2010 ◽  
Vol 19 (08) ◽  
pp. 1641-1650 ◽  
Author(s):  
FIRAT KAÇAR

A new tunable CMOS FDNR circuit is proposed. The circuit is based on the transcapacitive gyrator approach with both transcapacitive stages realized by MOS transistors configuration. This FDNR element lends itself well to the design of low-pass ladder filters and its use will result in a more efficient integrated circuit implementation than filters that simulate floating inductors utilizing resistive gyrators. The applications of FDNR to realize a current-mode fifth-order elliptic filter and current mode sixth-order elliptic band-pass filter are given. The proposed FDNR is simulated using CMOS TSMC 0.35 μm technology. Simulation results are given to confirm the theoretical analysis.


2011 ◽  
Vol 110-116 ◽  
pp. 5044-5047
Author(s):  
Abdul Qadir

This paper presents a current mode biquad filter, which uses multiple output OTAs. The proposed filter design has electronic tunability because of the use of OTAs and is suitable for implementation in CMOS technology because of the use of grounded capacitors.


2021 ◽  
Vol 11 (2) ◽  
pp. 146-160
Author(s):  
Suvajit Roy ◽  
Tapas Kumar Paul ◽  
Saikat Maiti ◽  
Radha Raman Pal

The objective of this study is to present four new universal biquad filters, two voltage-mode multi-input-single-output (MISO), and two current-mode single-input-multi-output (SIMO). The filters employ one voltage differencing current conveyor (VDCC) as an active element and two capacitors along with two resistors as passive elements. All the five filter responses, i.e., high-pass, low-pass, band-pass, band-stop, and all-pass responses, are obtained from the same circuit topology. Moreover, the pole frequency and quality factor are independently tunable. Additionally, they do not require any double/inverted input signals for response realization. Furthermore, they enjoy low active and passive sensitivities. Various regular analyses support the design ideas. The functionality of the presented filters are tested by PSPICE simulations using TSMC 0.18 µm technology parameters with ± 0.9 V supply voltage. The circuits are also justified experimentally by creating the VDCC block using commercially available OPA860 ICs. The experimental and simulation results agree well with the theoretically predicted results.


2018 ◽  
Vol 2 (2) ◽  
Author(s):  
Soma Ahmadi ◽  
Seyed Javad Azhari

This paper aims to introduce a novel Fully Differential second generation Current Conveyor (FDCCII) and its application to design a novel Low Power (LP), very high CMRR, and wide bandwidth (BW) Current Mode Instrumentation Amplifier (CMIA). In the proposed application, CMRR, as the most important feature, has been greatly improved by using both common mode feed forward (CMFF) and common mode feedback (CMFB) techniques, which are verified by a perfect circuit analysis. As another unique quality, it neither needs well-matched active blocks nor matched resistors but inherently improves CMRR, BW, and power consumption hence gains an excellent matchless choice for integration. The FDCCII has been designed using 0.18 um TSMC CMOS Technology with ±1.2 V supply voltages. The simulation of the proposed FDCCII and CMIA have been done in HSPICE LEVEL 49. Simulation results for the proposed CMIA are as follow: Voltage CMRR of 216 dB, voltage CMRR BW of 300 Hz. Intrinsic resistance of X-terminals is only 45 Ω and the power dissipation is 383.4 μW.  Most favourably, it shows a constant differential voltage gain BW of 18.1 MHz for variable gains (here ranging from 0 dB to 45.7 dB for example) removing the bottleneck of constant gain-BW product of Voltage mode circuits.


Sign in / Sign up

Export Citation Format

Share Document