scholarly journals Calculation and Measurement of Coil Inductance Profile in Tubular Linear Reluctance Motor and its Validation by Three Dimensional FEM

2011 ◽  
Vol 62 (4) ◽  
pp. 220-226 ◽  
Author(s):  
Ali Mosallanejad ◽  
Abbas Shoulaie

Calculation and Measurement of Coil Inductance Profile in Tubular Linear Reluctance Motor and its Validation by Three Dimensional FEMThis paper reports a study of coil inductance profile in all positions of plunger in tubular linear reluctance motors (TLRMs) with open type magnetic circuits. In this paper, maximum inductance calculation methods in winding of tubular linear reluctance motors are described based on energy method. Furthermore, in order to calculate the maximum inductance, equivalent permeability is measured. Electromagnetic finite-element analysis for simulation and calculation of coil inductance in this motor is used. Simulation results of coil inductance calculation using 3-D FEM with coil current excitation is compared to theoretical and experimental results. The comparison yields a good agreement.

2007 ◽  
Vol 353-358 ◽  
pp. 1072-1077 ◽  
Author(s):  
Ren Ping Shao ◽  
Xin Na Huang ◽  
Pu Rong Jia ◽  
Wan Lin Guo ◽  
Kaoru Hirota

A method of damage detection and fault diagnosis for gears is presented based on the theory of elastomeric dynamics according to the theory of cracked beam. It takes an advantage of accurate fault diagnosis of gear body using the change of dynamic features and has some advantages for dynamic design of gear systems.The dynamics characteristics, i.e., natural frequency, vibration shape,dynamic response and so on, due to crack of gear tooth are studied, and the gear dynamics characteristics caused by the position and size of crack are deeply investigated by comparison with FEM. The theoretical analysis results are contrasted with numerical simulation results and shows good agreement with the result by FEM. The proposed method can be used to detect damage and diagnose fault for gear structures and also can be applied to designing dynamic characteristics for gear systems.


2012 ◽  
Vol 446-449 ◽  
pp. 2206-2209
Author(s):  
Jin Long Wang

Three-dimensional finite element model of the mine escape capsule is established. With the different values of explosion shock waves, simulation analysis of the entry locker is performed by using ABAQUS. The simulation results indicate that the mine escape capsule is safe and available if the surge pressure of shock waves is less than 3.5Mpa.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
K.-C. Liao ◽  
H.-L. Lu

Temperature rise could be a crucial issue for some electronic connectors subjected to the relative large electrical current. A nonstatistical multiscale sinusoidal rough surface (MSRS) model is adopted to estimate the contact area between matched metallic terminals as a function of contact load. A fast Fourier transform (FFT) is conducted to characterize the measured surface topology of the terminals. Multiphysics three-dimensional (3D) finite element analysis (FEA) is then carried out to evaluate the temperature rise of mated micro-universal serial bus (USB) connectors. Temperature distributions of the terminal based on the numerical simulations are in good agreement with those based on the measurements using a thermal couple and an infrared thermal camera as well.


2009 ◽  
Vol 19 (02) ◽  
pp. 651-660 ◽  
Author(s):  
GUOSI HU

This letter presents a new hyperchaotic system, which was obtained by adding a nonlinear quadratic controller to the first equation and a linear controller to the second equation of the three-dimensional autonomous modified Lorenz chaotic system. This system uses only two multipliers but can generate very complex strange attractors with three positive Lyapunov exponents. The system is not only demonstrated by numerical simulations but also implemented via an electronic circuit, showing very good agreement with the simulation results.


2021 ◽  
Vol 2108 (1) ◽  
pp. 012016
Author(s):  
Jieyu Liu ◽  
Ye Tang ◽  
Wenyu Cheng ◽  
Changpeng Li

Abstract The structural characteristics and basic design requirements of design of switched reluctance linear generator are introduced. According to the general principles and design experience of electromechanical design, the dimension of design of switched reluctance linear generator is determined, and the two-dimensional and three-dimensional static finite element models of design of switched reluctance linear generator are established in Flux 2D and Flux 3D respectively. By comparing the simulation results of the two-dimensional model and the three-dimensional model, it is found that the difference between the real simulation results of the 2D model and the 3D model is small, and the calculation time cost of the 2D finite element simulation is much lower than that of the 3D model. Therefore, the subsequent work of this paper adopts the 2D finite element model. Finally, the static electromagnetic field and electromagnetic characteristics of the design of switched reluctance linear generator are analyzed by finite element analysis.


2021 ◽  
Author(s):  
Chao Hu ◽  
Xiao-liang Wang ◽  
Qing-quan Liu

<p>The calving of large-scale icebergs into the sea can generate a local tsunami that may threaten coastal communities or passing ships. A three-dimensional smoothed particle hydrodynamics model of rigid-body–fluid system is established to simulate the spatial wave generated by calving iceberg. The model is tested with simulated waves induced by a cube iceberg fall into the water body. Good agreement is obtained between simulation results and experimental data. The generation and evolution processes, and the near flow-field characteristics of the waves are analyzed. The simulation results show that waves generated in iceberg calving can generate not only a huge leading wave but also notable tailing waves. The initial propagation direction of the leading wave is determined by iceberg geometry, but as the leading wave propagates away, the water level displacement gradually develops into a semicircle wavefront which is irrelevant to iceberg geometry.</p>


2008 ◽  
Vol 1128 ◽  
Author(s):  
H. Zapolsky ◽  
J. Boisse ◽  
R. Patte ◽  
N. Lecoq

AbstractThe coarsening kinetics of γ’ precipitates in binary and ternary Al3Sc1-xZrx alloys is studied by using the two- and three-dimensional phase-field simulations. Our focus is on the influence of diffusion coefficients of Sc and Zr atoms on the transformation path kinetics from disordered f.c.c. matrix to two phases equilibrium state with γ’ precipitates and f.c.c. disordered matrix. Our simulation results demonstrate that in the case of binary alloys taking into account the concentration dependence of the mobility of atoms decreases the coarsening rate. In the case of ternary alloys we show that the Al3Sc particles precipitate first following by appearance of a Zr-rich shell. Our simulations results are in good agreement with experimental observations.


2011 ◽  
Vol 1 (2) ◽  
pp. 99-112 ◽  
Author(s):  
Sharmina Begum ◽  
M. G. Rasul ◽  
R. J. Brown ◽  
N. Subaschandar ◽  
Phil Thomas

A new stormwater quality improvement device called ‘Green Gully’ has been designed and developed in this study with the aim of reusing stormwater for irrigating trees and other plants. The main purpose of the Green Gully is to collect road runoff/stormwater, make it suitable for irrigation and provide an automated network system for watering roadside plants and irrigational areas. This paper presents the design and development of Green Gully along with experimental and computational investigations of the performance of Green Gully. Performance (in the form of efficiency, i.e. the percentage of water flow through the gully grate) was experimentally determined using a gully model in the laboratory first, then a three-dimensional numerical model was developed and simulated to predict the efficiency of Green Gully as a function of flow rate. Computational fluid dynamics code FLUENT was used for the simulation. GAMBIT was used for geometry creation and mesh generation. Experimental and simulation results are discussed and compared in this paper. The predicted efficiency was compared with the laboratory measured efficiency. It was found that the simulated results are in good agreement with the experimental results.


1992 ◽  
Vol 114 (4) ◽  
pp. 459-464 ◽  
Author(s):  
Chinghua Hung ◽  
Shiro Kobayashi

Three-dimensional rigid-plastic finite element method was used to analyze the practice of open-die block forging, focusing on the effects of die configurations and forging pass designs. Four combinations of die configurations were investigated: conventional flat dies, top flat/bottom V-shaped dies, and double V-shaped dies with 120 and 135 deg included angles. Two different pass designs, 90 and 180 deg rotation angles between succeeding passes, were applied to each die set. The results include the magnitude and distribution of effective strains along the center line of the cylindrical workpiece and the final shape of the workpiece. Good agreement was observed in comparison with experimental data from physical modeling method, and several suggestions were made for choosing suitable dies.


Author(s):  
Andrew Kenny ◽  
Alan Palazzolo

Abstract A magnetic circuit model for a homopolar magnetic bearing is presented. This model connects the fore and aft circumferential flux paths with axial flux paths through the rotor and back iron. The bias flux is provided by a circumferential permanent magnet in the back iron. Results for an analysis using the nonlinear Hyperco50 B-H curve are presented. These results are compared to the results of a three dimensional magnetostatic finite element analysis. The two analytical methods are in good agreement and show that the control flux in this type of bearing follows both circumferential and axial paths.


Sign in / Sign up

Export Citation Format

Share Document