scholarly journals Influence of Heat Input on the Content of Delta Ferrite in the Structure of 304L Stainless Steel GTA Welded Joints

Author(s):  
Pavol Sejč ◽  
Rastislav Kubíček
Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2022
Author(s):  
Essam R. I. Mahmoud ◽  
Hamad Almohamadi ◽  
Abdulrahman Aljabri ◽  
Mohamed Abdelghany Elkotb

This work aims to optimize the main YAG fiber laser parameters to weld 304L stainless steel plates of 3 mm thick. Different laser powers (2500, 2000, and 1500 W) and speeds (60, 40, and 20 mm/s) were used and merged in heat input, maintaining the defocusing distance at –2 mm to get full penetration. The weld quality and the effect of the laser heat input on the microstructures of the weld and heat-affected zones were investigated. Besides, the fracture strength of the welded joints and hardness distribution through the cross-sections were evaluated. The weld width has a direct relationship with heat input. The laser power of 2800 W produced full penetration joints without any macro defects while reduction in laser power pronounced partial penetration defects. The size of the heat-affected zone in all the processing parameters was very small. The microstructure of the weld zone shows columnar dendrite austenite grains with small arm spacing in most of the welded zone. The size of the dendrites became finer at lower heat input. At a higher heat input, a reasonable amount of lathy equiaxed grains with some delta ferrite occurred. A small amount of delta ferrite was detected in the heat-affected zone, which prevented the crack formation. The hardness of the weld metal was much higher than that of the base metal in all processing parameters and it has a reverse relationship with the heat input. The fracture strength of the welded joints was very close to that of the base metal in the defect-free samples and it increased with decreasing the heat input.


2014 ◽  
Vol 809-810 ◽  
pp. 390-394
Author(s):  
Meng Yu Chai ◽  
Can Liang ◽  
Dong Dong Wang ◽  
Quan Duan ◽  
Zao Xiao Zhang

The intergranular corrosion (IGC) behaviors of welded joints of 316LN stainless steel with different welding heat input were investigated in this study. The boiling nitric acid method was chosen to provide the IGC environment. The corrosion rates of different specimens were studied and the micro-structures of each zone (base material, heat affected zone and weld zone) were analyzed in detail. The results show that welding heat input affects IGC resistance remarkably and low welding heat input can reduce the IGC tendency. The IGC test can be divided into three stages, i.e. the initial corrosion stage, stable corrosion stage and rapid corrosion stage. The IGC resistance of WZ for 316LN stainless steel is better than that of BM and HAZ due to the beneficial role of delta ferrite.


1994 ◽  
Vol 25 (6) ◽  
pp. 1147-1158 ◽  
Author(s):  
C. C. Tseng ◽  
Y. Shen ◽  
S. W. Thompson ◽  
M. C. Mataya ◽  
G. Krauss

2001 ◽  
Vol 71 (3) ◽  
pp. 440-449
Author(s):  
Eniko Reka Fabian ◽  
Janos Kuti ◽  
Jozsef Gati ◽  
Laszlo Toth

The welded metals characteristics produced by TIG welding or laser beam welding depend on heat input as a function of laser power and welding speed. High laser power and high welding speed have produced welded joint with a remarkable decrease in fusion zone size and an acceptable weld profile with high weld depth/width ratio. At duplex stainless steels the microstructure of welded metal, and heat affected zone is strongly influenced by cooling rate, which is depend on heat input as a function of laser power and/or welding speed. It was found that increasing welding speed the corrosion rate of welded joints decreased. In austenitic stainless steels appeared pitting corrosion in the base material as well as in the welding zone. In case of 2304 duplex stainless steel pitting corrosion appeared in welded metal and heat affected zone in case of autogenously welding, but at 2404 duplex stainless steel pitting appear more in the heat affected zone.


Author(s):  
jianguo Li ◽  
Huan Li ◽  
Yu Liang ◽  
Pingli Liu ◽  
Lijun Yang

A multi-strand composite welding wire was applied to join high nitrogen austenitic stainless steel, and microstructures and mechanical properties were investigated. The electrical signals demonstrate that the welding process using a multi-strand composite welding wire is highly stable. The welded joints are composed of columnar austenite and dendritic ferrite and welded joints obtained under high heat input and cooling rate have a noticeable coarse-grained heat-affected zone and larger columnar austenite in weld seam. Compared with welded joints obtained under the high heat input and cooling rate, welded joints have the higher fractions of deformed grains, high angle grain boundaries, Schmid factor and the lower dislocation density under the low heat input and cooling rate, which indicate a lower tensile strength and higher yield strength. The rotated goss (GRD) orientation of a thin plate and the cube (C) orientation of a thick plate are obvious after welding, but the S orientation at 65° sections of Euler’s space is weak. The δ-ferrite was studied based on the primary ferrite solidification mode. It is observed that low heat input and high cooing rate result in the increasing of δ-ferrite and high dislocation density was obtained in grain boundaries of δ-ferrite. M23C6 precipitates due to low cooling rate and heat input in weld seam and deteriorates the elongation of welded joints. The engineering stress-strain curves also show the low elongation and tensile strength of welded joints under low heat input and cooling rate, which is mainly caused by the high fraction of δ-ferrite and the precipitation of M23C6.


2014 ◽  
Vol 1033-1034 ◽  
pp. 834-838 ◽  
Author(s):  
Li Chan Li ◽  
Can Liang ◽  
Dong Dong Wang ◽  
Yong Quan Li ◽  
Quan Duan

316LN stainless steel is a material with excellent mechanical properties, good resistance to intergranular corrosion and good weldability, and it has been used in many fields of industry. Welding quality has great influence on the strength and corrosion resistance of weldment. In this study, one group of submerged arc welding and three groups of shielded metal arc welding were taken to study the influence of heat input on grain size in the structure of 316LN welded joints. The results show that the microstructures of the weld zones in experiment were all consist of austenite and a small amount of banding or dendritic δ-ferrite and the amount of ferrite decrease with the increase of heat input. It also can be concluded from the experiment that with the increase of welding heat input the grain size of overheated zone decrease.


Author(s):  
Dave O’Donnell ◽  
Nicole Karlen ◽  
Carl Kettermann

The advent of Laser Beam Welding (LBW) has had a significant impact on resultant metallurgical performance of stainless steel welded heat exchanger tubing. While productivity enhancements are well recognized the metallurgical benefits are not. The low total heat input combined with the very high energy density results in ultra-fast quenching of molten metal, super-cooling past normal primary ferrite solidification in common 304/304L and 316/316L grades directly to austenite resulting in weldments with no retained delta ferrite and some inherent corrosion advantages. The same low total heat input and high energy density generates dramatically smaller dendrite spacing making subsequent homogenization by the combined efforts of cold work and solution annealing dramatically more effective. It should be recognized that this paper deals with issues relating to tube production where welds are autogenous or made without filler metal addition and are subsequently cold worked and solution annealed. Resulting benefits of laser welding include a seamless metallographic appearance, and improved field performance. The benefits and limitations of these enhancements are explored relative to other common stainless steel grades, as are alloy characteristics affecting performance.


CORROSION ◽  
10.5006/2727 ◽  
2018 ◽  
Vol 74 (7) ◽  
pp. 737-746
Author(s):  
K.B. Fisher ◽  
B.D. Miller ◽  
E.C. Johns ◽  
R. Hermer ◽  
C. Brown ◽  
...  

Sensitization has previously been implicated in the stress corrosion cracking (SCC) susceptibility of carbon-containing Type 304 stainless steel (SS) in oxygenated water. Thus, Type 304L SS, with low carbon content, is expected to be resistant to sensitization and therefore SCC susceptibility. The current work evaluates the SCC response of two heats of dual certified Type 304/304L SS that exhibit different microchemical characteristics. One heat contains elevated boron content, while the other heat has delta ferrite stringers in the matrix. It is shown that both heats can be susceptible to SCC because of their unique microchemical features under certain combinations of heat treatment, water chemistry, and deformation level, while under other conditions they remain relatively resistant to SCC.


Sign in / Sign up

Export Citation Format

Share Document