scholarly journals Simulasi CFD Pengaruh Konsentrasi Nanofluida Al2O3/Air Terhadap Performa Perpindahan Panas Pipa Radiator

2020 ◽  
Vol 13 (2) ◽  
pp. 54
Author(s):  
Yoga Arob Wicaksono ◽  
Sudarno . ◽  
Nanang Suffiadi Akhmad

The performance of heat transfer on a car radiator can be improved by using nanofluids as working fluids. In this study analyzes the of heat transfer performance of Al2O3/water nanofluids that pass through cylindrical pipes in 3D using the CFD simulation method for single phase approach. This research studied the effect of nanofluid concentration  0.1, 0.5, 1 and 1.5% on the heat transfer coefficient. The Reynolds number is varied between 9000 to 23000 and the ambient temperature is constant. The results showed that 1.5% Al2O3/water nanofluid increasing heat transfer coefficient up to 5.7% compared to base fluid.

Author(s):  
Lung-Yi Lin ◽  
Yeau-Ren Jeng ◽  
Chi-Chuan Wang

This study presents convective single-phase and boiling two-phase heat transfer performance of HFE-7100 coolant within multi-port microchannel heat sinks. The corresponding hydraulic diameters are 450 and 237 μm, respectively. For single-phase results, the presence of inlet/outlet locations inevitably gives rise to considerable increase of total pressure drop of a multi-port microchannel heat sink whereas has virtually no detectable influence on overall heat transfer performance provided that the effect of entrance has been accounted for. The convective boiling heat transfer coefficient for the HFE-7100 coolant shows a tremendous drop when vapor quality is above 0.6. For Dh = 450 μm, it is found that the mass flux effect on the convective heat transfer coefficient is rather small.


2020 ◽  
Vol 10 (4) ◽  
pp. 1255
Author(s):  
Liping Zeng ◽  
Xing Liu ◽  
Quan Zhang ◽  
Jun Yi ◽  
Xiaohua Li ◽  
...  

This paper mainly studies the heat transfer performance of backplane micro-channel heat pipes by establishing a steady-state numerical model. Compared with the experimental data, the heat transfer characteristics under different structure parameters and operating parameters were studied, and the change of heat transfer coefficient inside the system, the air outlet temperature of the back plate and the influence of different environmental factors on the heat transfer performance of the system were analyzed. The results show that the overall error between simulation results and experimental data is less than 10%. In the range of the optimal filling rate (FR = 64.40%–73.60%), the outlet temperature at the lowest point and the highest point of the evaporation section is 22.46 °C and 19.60 °C, the temperature difference does not exceed 3 °C, and the distribution gradient in vertical height is small and the air outlet temperature is uniform. The heat transfer coefficient between the evaporator and the condenser is larger than the heat transfer coefficient under the conditions of low and high liquid charge rate. It increases gradually along the flow direction, and decreases gradually with the flow rate of the condenser. When the width of the flat tube of the evaporator increases from 20 mm to 28 mm, the internal pressure drop of the evaporator decreases by 45.83% and the heat exchange increases by 18.34%. When the number of evaporator slices increases from 16 to 24, the heat transfer increases first and then decreases, with an overall decrease of 2.86% and an increase of 87.67% in the internal pressure drop of the evaporator. The inclination angle of the corrugation changes from 30° to 60°, and the heat transfer capacity and pressure drop increase. After the inclination angle is greater than 60°, the heat transfer capacity and resistance decrease. The results are of great significance to system optimization design and engineering practical application.


Author(s):  
Tiago A. Moreira ◽  
Francisco J. do Nascimento ◽  
Gherhardt Ribatski

The scope of the present paper is the evaluation of the heat transfer coefficient during flow boiling of DI-water/silica nanofluid inside a 1.1 mm ID tube. The experiments were performed for nanoparticles and DI-water with both having thermal conductivities of the same order of magnitude (kDI-water = 0.6 W/mK, ksilica = 1.4 W/mK). So, it was possible investigating the effect of the nanoparticles on the heat transfer coefficient under condition of negligible thermal conductivity enhancement. Experiments were carried out for mass velocities of 200, 400 and 600 kg/m2s, heat fluxes from 60 kW/m2 to 350 kW/m2 and nanoparticles volumetric concentration of 0.001%, 0.01% and 0.1%. Moreover, flow boiling heat transfer data under similar experimental conditions were obtained for DI-water without nanoparticles before and after performing each nanofluid test. The experiments were performed at the same test section according to the following sequence: i) DI-water, ii) 0.001% vol. nanofluid, iii) DI-water, iv) 0.01% vol. nanofluid, v) DI-water, vi) 0.1% vol. nanofluid, and vii) DI-water. Such procedure was adopted in order to evaluate the influence of the deposition of nanoparticles at each concentration on the heat transfer coefficient. For single-phase flow the HTC decreases as the experiments were performed. The thermal resistance due to deposition of nanoparticles is relevant to the heat transfer coefficient for single-phase flow of nanofluids inside microchannels. The flow boiling HTC decreases with increasing the nanoparticle volumetric concentration from a concentration of 0.001%. Based on the flow boiling HTC behaviors for tests with pure DI-water before and after the nanofluid tests, the fact that the HTC decreases with increasing the nanoparticle volumetric concentration is not explained only by the deposition on the surface of a nanoparticle layer. Tests for pure DI-water before the tests of nanofluids (BBN condition) and after all the nanofluids tests (ABN 0.1% condition) presents similar heat transfer coefficients, despite the deposition of a nanoparticle layer on the surface.


2013 ◽  
Vol 441 ◽  
pp. 112-115 ◽  
Author(s):  
Qing Jiang Liu ◽  
Fang Han

In order to study the effect on heat transfer performance of evaporator in the gravity feed liquid refrigeration system the different evaporator area, the simulation procedure is worked out. The procedure uses the visual basic language. The procedure can figure out the heat transfer coefficient and the temperature difference in different evaporator area and evaporating temperature with the required refrigerating capacity. Through simulation calculation, when the area is 80% of the original design area of evaporator, the evaporator of the heat transfer coefficient and heat transfer temperature difference is the most reasonable and the evaporator of the refrigerating capacity can meet the requirements of cold storage. The program provides the reliable data for the gravity feed liquid cooling system optimization.


Author(s):  
Chien-Yuh Yang ◽  
Wei-Chi Liu

Attributed to its high heat transfer coefficient, evaporating cooling involving the use of micro heat exchangers is considered a possible thermal management solution for cooling of high heat flux electronic devices. The desire to develop high-performance micro heat exchangers operating in the evaporation regime provides a major motivation for the present work. Methanol evaporated in two micro heat exchangers with chevron flow passages and straight flow passages respectively were tested in the present study. The test results show that the heat transfer coefficient increased with increasing flow rate in both chevron and straight flow passages micro heat exchangers. However, the effect of vapor quality on the heat transfer coefficient in the straight passages heat exchanger is in adverse to that in the chevron passages heat exchanger. The heat transfer coefficient increased with increasing vapor quality in the chevron passages heat exchanger but decreased in the straight passages heat exchanger. The flow visualization through transparent cover heat exchangers showed that the liquid film inside channel is partially dry out in the straight passages heat exchanger. The dryout portion area increased with increasing heating rate and exit vapor quality. This degraded the average heat transfer performance for evaporation in the straight passages heat exchanger. Because of the surface tension effect, the liquid film was dragged at the intersection corner of the upper and lower plate chevron passages. There is no significant dryout portion in the chevron passages heat exchanger. The relation of vapor quality with heat transfer performance in chevron passages heat exchanger is therefore similar to the boiling in a single channel prior to critical heat flux condition.


Author(s):  
Chaxiu Guo ◽  
Dongwei Zhang ◽  
Junjie Zhou ◽  
Wujun Zhang ◽  
Xinli Wei

The heat flux on the receiver tube is non-uniform because of uneven solar flux and receiver structure, which causes overheating and thermal stress failure of receiver and affected safe operations of the Concentrated Solar Power (CSP) system. In order to reduce the temperature difference in receiver tube wall and improve the efficiency of CSP system, the ternary eutectic salt LiF-NaF-KF (46.5-11.5-42 wt.%, hereafter FLiNaK), which has a better high thermal stability than that of nitrate salts at operating temperature of 900 °C, is selected as HTF, and heat transfer performance of FLiNaK in a corrugated receive tube with non-uniform heat flux is simulated by CFD software in the present work. The numerical results reveal that the non-uniform heat flux has a great influence on the temperature distributions of the receive tube and FLiNaK salt. Compared with the result of bare tube, the corrugated tube can not only significantly reduce the temperature difference in tube wall and salt by improving the uniformity of temperature distribution but also enhance the heat transfer of the salt, where the heat transfer coefficient increases with the Reynolds number and heat flux. Moreover, the enhanced effect of the corrugated tube depends on both the pitch and the height of ridges. It is found that the heat transfer coefficient of the salt gets a maximum when the ratio of the height of ridge to the pitch is 0.2. The research presented here may provide guidelines for design optimization of receiver tube in CSP system.


2014 ◽  
Vol 14 (01) ◽  
pp. 1450011 ◽  
Author(s):  
O. ANWAR BÉG ◽  
M. M. RASHIDI ◽  
M. AKBARI ◽  
A. HOSSEINI

A computational fluid dynamics (CFD) simulation of laminar convection of Al 2 O 3–water bio-nanofluids in a circular tube under constant wall temperature conditions was conducted, employing a single-phase model and three different two-phase models (volume of fluid (VOF), mixture and Eulerian). The steady-state, three-dimensional flow conservation equations were discretised using the finite volume method (FVM). Several parameters such as temperature, flow field, skin friction and heat transfer coefficient were computed. The computations showed that CFD predictions with the three different two-phase models are essentially the same. The CFD simulations also demonstrated that single-phase and two-phase models yield the same results for fluid flow but different results for thermal fields. The two-phase models, however, achieved better correlation with experimental measurements. The simulations further showed that heat transfer coefficient distinctly increases with increasing nanofluid particle concentration. The physical properties of the base fluid were considered to be temperature-dependent, while those of the solid particles were constant. Grid independence tests were also included. The simulations have applications in novel biomedical flow processing systems.


Author(s):  
Kapil V. Panchal ◽  
Santosh Abraham ◽  
Srinath V. Ekkad ◽  
Wing Ng ◽  
Andrew S. Lohaus ◽  
...  

Contouring of turbine endwalls has been widely studied for aerodynamic performance improvement of turbine passages. However, it is equally important to investigate the effect of contouring on endwall heat transfer, because a substantial increase in endwall heat transfer due to contouring will render the design impractical. In this paper, the effect of contouring on endwall heat transfer performance of a high-turning HP-turbine blade passage, operating under transonic exit Mach number conditions, is reported. Three endwall geometries were experimentally investigated at three different passage exit Mach numbers, 0.71, 0.88(design) and 0.95, for their heat transfer performance. One endwall is a non-contoured baseline endwall and the other two are contoured endwall geometries. One of the contoured endwall geometry was generated with the goal of reduction in stagnation pressure losses and the other was generated with the goal of reduced overall heat transfer through the endwall. The experiments were carried out in Virginia Tech’s transient, blow down, transonic linear cascade facility. Endwall surface temperatures were measured using infrared thermography technique. Local heat transfer coefficient values were calculated using the measured temperatures. The heat transfer coefficient values were then related to the endwall geometries using a camera matrix model. The measurement technique and the methodology for the post-processing of the heat transfer coefficient data have been presented in detail. Details of the flow behavior for these endwalls were obtained using CFD simulations and have been used to assist the interpretation of the experimental results. In this study, the heat transfer performance of the contoured endwalls in comparison to the non-contoured baseline case is presented. Both the contoured endwalls demonstrated a significant reduction in the overall average heat transfer coefficient values. The surface heat transfer coefficient distributions also indicated a reduction in the level of hot spots for most of the endwall surface. However, increase in the heat transfer coefficient values was observed especially in the area near the leading edge. The results indicate that, in addition to a probable improvement in aerodynamic performance, endwall contouring may also be used to improve the heat transfer performance of turbine passages. Additionally, aerodynamic behavior of these endwalls is discussed in detail in the companion paper GT2012-68425, “Effect of endwall contouring on a transonic turbine endwall: Part 1 – Aerodynamic performance.”


Sign in / Sign up

Export Citation Format

Share Document