scholarly journals Geotechnical properties of mixtures of basalt residual soil with tire rubber waste

Geotecnia ◽  
2018 ◽  
Vol 144 ◽  
pp. 35-50
Author(s):  
Manuela Morais ◽  
◽  
Felipe Bandeira ◽  
Mauro Menegotto ◽  
◽  
...  
2021 ◽  
Author(s):  
Herbet Alves Oliveira

Lightweight concrete has as main characteristic its low density due to the incorporation of light materials such as expanded clay, or even the incorporation of air whose function is to reduce the density, characteristic of cellular concrete. In Aracaju city, there are companies that promote tire reconditioning, generating large amounts of waste dust. The aim of this work is to study the reuse of tire rubber waste in light concrete from expanded clay. An experimental program was developed for the analysis of these concretes, varying the percentage of 1%, 2.5% and 5% of the tire rubber waste to replace the natural fine aggregate and 100% replacing the natural coarse aggregate by expanded clay (50% of expanded clay C1506 and 50% of C2215). The materials (cement, sand, expanded clays and tire rubber waste) were characterized through tests of particle size analysis and unit mass. The hardened concrete was evaluated through mechanical tests of axial compression strength, modulus of elasticity and tensile strength by diametrical compression, physical tests of water absorption and specific mass, in addition to image analysis by scanning electron microscopy. The use of expanded clay with incorporation of 1% of tire rubber waste guaranteed better results in mechanical resistance, lower water absorption and greater specific mass than the mixtures with 2.5 and 5%, reaching values close to the reference concrete. Thus, the residue can be an alternative for reuse, avoiding disposal.


Author(s):  
Adriane Pczieczek ◽  
Adilson Schackow ◽  
Carmeane Effting ◽  
Itamar Ribeiro Gomes ◽  
Talita Flores Dias

This study aims to evaluate the application of discarded tire rubber waste and Expanded Polystyrene (EPS) in mortar. For mortars fine aggregate was replaced by 10%, 20% and 30% of rubber and, 7.5% and 15% of EPS. We have verified the consistency, density, amount of air and water retentitivity in fresh state. The compressive strength, water absorption, voids ratio and specific gravity have been also tested in hardened state. The application of rubber powder contributed to the increase in entrained air content and in reducing specific gravity, as well as reducing compressive strength at 28 days. The addition of EPS also contributed to the increase of workability, water absorption and voids ratio, and decreased density and compressive strength when compared to the reference mortar. The use of rubber waste and EPS in mortar made the material more lightweight and workable. The mortars mixtures containing 10% rubber and 7.5% EPS showed better results.


2018 ◽  
Vol 11 (3) ◽  
pp. 323-329 ◽  
Author(s):  
A. A. Berlin ◽  
T. V. Dudareva ◽  
I. A. Krasotkina ◽  
V. G. Nikol’skii

Structures ◽  
2021 ◽  
Vol 33 ◽  
pp. 3461-3474
Author(s):  
Demarcus Werdine ◽  
Guilherme Antonio Oliver ◽  
Fabricio Alves de Almeida ◽  
Mirian de Lourdes Noronha ◽  
Guilherme Ferreira Gomes

2020 ◽  
Vol 3 (2) ◽  
pp. p61
Author(s):  
Yusuf A. Lahai ◽  
Dauda M. Kamara ◽  
Chernoh M. Jalloh

Freetown has documented one of the most devastating landslides in the world in 2017. Many debates in the media, few scientific papers and technical documents, have argued with eloquence ascertaining human factors, particularly deforestation and urbanization, as the dominant causative factor. This notion seems to be widely accepted for all other slides by the communities, government agencies and departments. Therefore, this work attempts to expand on existing public knowledge by demonstrating the less influential or insignificant human factors which can have impacts on certain landslide occurrences in the Freetown Layered-Complex. The representative landslide considered for this study occurred beyond the vicinity of urbanized zone. Therefore, to establish a clear understanding of the actual causative factors, fieldwork and laboratory investigations were undertaken. During the field survey, we assessed the rock type, discontinuities, geomorphology and hydrological influence of the landslide. The specific rock series underlying the landslide was confirmed through thin section analysis at the National Minerals Agency (NMA). DCP tests and laboratory analyses enhanced the derivation of geotechnical properties of the residual soil/regolith.This work systematically presented how natural conditions, such as: geology (rock types and tectonic signatures), geomorphology, hydrology and the geotechnical properties of the slope soil, have interplayed in the occurrence of the landslide event. In addition, the slip surface of the landslide occurred at a depth below the reach of plant activities (2.6 m). This information may help modify public messages by institutions and can be a source of useful information for the country’s Landslide Disaster Management Department (LDMD).


2014 ◽  
Vol 4 (2) ◽  
pp. 618-624 ◽  
Author(s):  
H. Sellaf ◽  
H. Trouzine ◽  
M. Hamhami ◽  
A. Asroun

An experimental work was undertaken to study the effect of rubber tires on the geotechnical properties of a dredged sediment, using a mixing ratio of large size. For comparison, two types of soil were studied (dredged sediment from Fergoug dam and Tizi Tuff from the north west of Algeria). Taking into account the high compressibility and the low water absorption of the rubber tires, grain size analysis, density, Atterberg limits analysis, chemical composition, direct shear tests, loading-unloading tests, modified Proctor and CBR tests are performed on the two soils and their mixtures with different scrap tire rubber (10, 20, 25 and 50%). The results show that liquid limits and plastic indexes decrease with the scrap tire rubber content and that the decrease is more significant for soil with high plasticity. Cohesion also decreases with scrap tire rubber content when the internal friction angle is vacillating. Compression and recompression indexes increase gradually with the scrap tire rubber content and the variation for compression index is more significant for the two soils. Compaction characteristics and CBR values decrease with scrap tire rubber content. The CBR values for W=3% are important compared to those with W=5% excepted for mixture with (75% tuff and 25% scrap tire rubber). The results show that the scrap tire rubber can be used as a reinforcement material for dredged soil, but with a content that should not highly affect the compressibility.


2019 ◽  
Vol 11 (24) ◽  
pp. 6997 ◽  
Author(s):  
Andre Hekermann Buss ◽  
João Luiz Kovaleski ◽  
Regina Negri Pagani ◽  
Vander Luiz da Silva ◽  
Jaqueline de Matos Silva

Due to the increasing production of motor vehicles, a large amount of waste with different characteristics and compositions is generated, notably end-of-life tires, which are harmful to the environment when not properly disposed. Their composition contains contaminating chemical elements, resulting in negative impacts on the environment. This research aims to present a process that favors the recycling of rubber waste from end-of-life tires. For the construction of the state of the art and state of the technique, a review of the literature on end-of-life tire rubber, and a search on Google Patents and Espacenet was done using Methodi Ordinatio. For the experimental work, samples were made using concentrations of 20%, 40%, and 60% of end-of-life tire rubber particles, with the addition of thermoset polymeric matrix of isophthalic polyester resin, catalyst, and dyes. In order to evaluate the quality of the mixture, some tests with the material resulting from the mixture were performed: Izod impact strength, Shore D hardness, immersion density determination, flexural strength, and scanning electron microscopy analysis. The results from the tests indicate that the composition with 60% of rubber particles had better mechanical results than samples containing 20% and 40%. The tests also show that end-of-life tire particles promote chemical adsorption (interaction) with the thermoset polymer matrix, favoring the mechanical properties. The final results of this research are: the literature review and the search on granted patents showed that this study is original; the experimental work suggests that practical applications are possible, generating a new product, harder with a proportion of 60% of rubber particles, as indicated by the tests, with a smooth surface that does not require polishing. Thus, this research is characterized as innovative as well as having sustainable characteristics.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-10
Author(s):  
Shatha S. Hasan ◽  
Rasha H. Abd Al-Ameer ◽  
Haider A. Hassani

The use of epoxy asphalt in road paving is one of the promising solutions for long-life road pavements in service with minimal maintenance. However, the high cost still stands as an obstacle to the widespread use of this high-performance material. The use of tire rubber waste (TRW) is one of the solutions in order to reduce costs, improve the environment, and improve the performance of epoxy asphalt mixtures, in addition to alleviating the brittle behaviour that epoxy asphalt tends to. This study proposes to add TRW in improving epoxy asphalt produced in local laboratories by using phenol Novolac resin as an epoxy curing agent of the epoxy base inside asphalt binder to produce and evaluate improved epoxy asphalt. The percentage of epoxy base used was 25% of the asphalt binder mixed with a 1:1 ratio of epoxy to Novolac using potassium hydroxide (KOH) as a catalyst. Whereas the proportions of added TRW were (1%, 2%, and 3%) of the total mixture weight by using the dry mixing method. The results showed, at its best values at 2% of TRW, that there was an increase in Marshall stability by 10%, and Marshall flow remained within specification limits with a decrease in the value of air voids at the highest bulk density, and a slight decrease in indirect tensile strength by 2%, with remaining excellent resistance to moisture sensitivity at 94%, and improvement in resistance to permanent deformation (rutting) by 14%. This indicates an improvement in the improved epoxy asphalt mixtures by the addition of TRW compared to the reference epoxy asphalt mixtures.


Sign in / Sign up

Export Citation Format

Share Document