scholarly journals KAJI EKSPERIMENTAL PENGARUH BAFFLE PADA ALAT PENUKAR PANAS ALIRAN SEARAH DALAM UPAYA OPTIMASI SISTEM PENGERING

2019 ◽  
Vol 13 (1) ◽  
pp. 8
Author(s):  
Azwinur Azwinur ◽  
Zulkifli Zulkifli

Heat exchangers or heat exchangers are tools used to change the temperature of the fluid or change the fluid phase by exchanging heat with another fluid. In a heat exchanger, the ability to exchange heat is largely determined by the type of fluid flow and fluid passing through the heat exchanger. The use of heat exchangers in the field of drying is now a necessity to overcome the problems of drying productivity. The purpose of this study was carried out to determine the effectiveness of the heat exchanger experimentally based on directional flow by comparing construction using baffle and without using baffle in an effort to optimize the drying system. The research method was carried out by fabricating 2 units of heat exchangers and by field testing. The test data obtained are the input and output temperatures of the heating fluid flow and cooling fluid flow and flow velocity. Based on preliminary research data shows that the use of baffle affects the increase in temperature on the heat exchanger, where at the fresh air outlet that does not use baffle produces a temperature of 72oC while the baffle produces 88oC with the Log Mean Temperature Difference heat exchanger without using a baffle higher than heat exchanger that uses a baffle guide blade. This can illustrate that the smaller heat losses are wasted so that the absorption of heat by the reverse system will be higher.

2018 ◽  
Vol 16 (2) ◽  
pp. 39
Author(s):  
Syukran Syukran

Abstrak Heat exchanger atau alat penukar panas adalah alat-alat yang digunakan untuk mengubah temperatur fluida atau mengubah fasa fluida dengan cara mempertukarkan panasnya dengan fluida lain. Pada sebuah penukar panas kemampuan mempertukarkan panas sangat ditentukan oleh tipe dan jenis aliran fluida yang melewati penukar panas. Secara garis besar penukar panas dibagi berdasarkan arah aliran fluidanya. Berdasarkan arah aliran fluida penukar panas  dibedakan menjadi 3 (tiga) jenis aliran, yaitu aliran searah (parallel flow), aliran berlawanan (counter flow) dan aliran silang (cross flow). Saat ini penukar panas banyak dipakai dalam  industri pengeringan produk-produk pertanian, perkebunan dan perikanan skala kecil dan menengah. Penggunaan penukar panas dalam bidang pengeringan saat ini sudah menjadi kebutuhan untuk mengatasi permasalahan produktifitas pengeringan. Umumnya penukar panas yang digunakan adalah tipe aliran berlawanan. Beberapa penelitian telah dilakukan untuk mengetahui efektifitas penukar panas tersebut yang umumnya berfokus pada jenis aliran berlawanan. Penelitian penelitian spesifik yang mengkaji perbandingan efisiensi penukar panas  untuk ketiga jenis aliran belum ditemukan. Penelitian ini dilakukan untuk mengetahui efisiensi temperatur penukar panas untuk jenis aliran jenis aliran melintang, sejajar, dan  berlawanan. Metode penelitian dilakukan fabrikasi 3 unit exchanger tipe gas-gas dengan dimensi 50 (P) x 10 (L) x 30 (T) dengan jumlah tube 17 susunan. Hasil  penelitian menunjukkan bahwa efisiensi temperatur untuk ketiga jenis penukar panas tersebut adalah 21,3% aliran melintang, 17,3% aliran berlawanan dan 15,9%  aliran sejajar. Hasil penelitian menyimpulkan bahwa efisiensi temperatur tertinggi diperoleh jenis penukar panas aliran melintang. Kata kunci : Penukar panas, aliran sejajar, aliran berlawanan, aliran silang, temperatur.  Abstrack Heat exchangers or heat exchangers are the means used to change the temperature of the fluid or to change the fluid phase by exchanging heat with other fluids. In a heat exchanger the heat exchange ability is greatly determined by the type and type of fluid flow passing through the heat exchanger. Broadly speaking the exchanger is divided based on the direction of fluid flow. Based on the direction of fluid flow exchanger is divided into 3 (three) types of flow, namely parallel flow, counter flow and cross flow. Currently, heat exchangers are widely used in the drying industry of small and medium-sized agricultural and small-scale plantation and fishery products. The use of exchangers in the field of drying is now a need to overcome the problems of drying productivity. Generally the exchanger used is the opposite flow type (counter flow). Several studies have been conducted to determine the effectiveness of these exchangers which generally focus on the opposite type of flow. Specific research studies that reviewed the efficiency of exchangers for the three types of flow have not been found. This research was conducted to find out the efficiency of heat exchanger temperature for flow type of cross flow, parallel flow and counter flow type. The research method was fabricated 3 units of gas-gas exchanger type with dimension 50 (P) x 10 (L) x 30 (T) with the number of tubes 17 staggered arrangement. The results show that the temperature efficiency for the three types of heat exchanger is 21.3% cross flow flow, 17.3% flow counter flow and 15.9% parallel flow flow. The results concluded that the highest temperature efficiency obtained by cross flow flow type exchanger. Keywords: Heat exchanger, parallel flow, counter flow, cross flow, temperature


2022 ◽  
Author(s):  
Kaiu Piipponen ◽  
Annu Martinkauppi ◽  
Sami Vallin ◽  
Teppo Arola ◽  
Nina Leppäharju ◽  
...  

Abstract The energy sector is undergoing a fundamental transformation, with significant investment in low-carbon technologies to replace fossil-based systems. In densely populated urban areas, deep boreholes offer an alternative over shallow geothermal systems, which demand extensive surface area to attain large-scale heat production. This paper presents numerical calculations of the thermal energy that can be extracted from the medium-deep borehole heat exchangers of depths ranging from 600-3000 m. We applied the thermogeological parameters of three locations across Finland and tested two types of coaxial borehole heat exchangers to understand better the variables that affect heat production in low permeability crystalline rocks. For each depth, location, and heat collector type, we used a range of fluid flow rates to examine the correlation between thermal energy production and resulting outlet temperature. Our results indicate a trade-off between thermal energy production and outlet fluid temperature depending on the fluid flow rate, and that the vacuum-insulated tubing outperforms high-density polyethylene pipe in energy and temperature production. In addition, the results suggest that the local thermogeological factors impact heat production. Maximum energy production from a 600-m-deep well achieved 170 MWh/a, increasing to 330 MWh/a from a 1000-m-deep well, 980 MWh/a from a 2-km-deep well, and up to 1880 MWh/a from a 3-km-deep well. We demonstrate that understanding the interplay of the local geology, heat exchanger materials, and fluid circulation rates is necessary to maximize the potential of medium-deep geothermal boreholes as a reliable long-term baseload energy source.


2020 ◽  
Vol 34 (14n16) ◽  
pp. 2040111
Author(s):  
Shu-Ling Tian ◽  
Ying-Ying Shen ◽  
Yao Li ◽  
Hai-Bo Wang ◽  
Sheryar Muhammad ◽  
...  

Plate-fin heat exchangers are widely used in industry at present due to their compact structure and high efficiency. However, there is a problem of flow maldistribution, resulting in poor performance of heat exchangers. The influence of the header configuration on fluid flow distribution is studied by using CFD software FLUENT. The numerical results show that the fluid flow inside the header is seriously uneven. The reliability of the numerical simulation is validated against the published results. They are found to be basically consistent within considerable error. The optimal number of the punch baffle is investigated. Various header configuration with different opening ratios have been studied under the same boundary conditions. The gross flow maldistribution parameter (S) is used to evaluate flow nonuniformity, and the flow maldistribution parameters of different schemes under different Reynolds numbers are listed and compared. The optimal header with minimum flow maldistribution parameter is obtained through the performance analysis of headers. It is found that the flow maldistribution of the improved header is significantly smaller compared with the conventional header. Hence, the efficiency of the heat exchanger is effectively enhanced. The conclusion provides a reference for the optimization design of plate-fin heat exchanger.


Author(s):  
Prabhakara Rao Bobbili ◽  
Bengt Sunden

An experimental investigation has been carried out to find the nature of temperature profiles of the process and cooling fluids during steam condensation across the port to channel in plate heat exchangers (PHEs). In the present study, low corrugation angle (30°) plates have been used for different plate package of PHEs with 41 and 81 plates. The process steam entered at 1 bar with a small degree of superheat. Water has been used as the cold fluid. A traverse temperature probe is inserted into both inlet and outlet ports of the plate heat exchanger. The temperature of the process steam and cooling fluid have been measured and recorded at the location of first, middle and last channels for different inlet and exit flow conditions for each plate package of the heat exchanger. Also, the overall pressure drop has been measured at different conditions at the outlet of the process steam, i.e., full and partial condensation. The traverse temperature measurements have indicated that there is a considerable variation in temperature along inlets and outlets of process steam and cooling fluid, due to flow maldistribution. The experimental data has been analyzed to show how the flow distribution on the cooling side affects the condensation of steam in plate heat exchangers. The present results will help to study further the nature of steam condensation in parallel channels of heat exchangers.


2010 ◽  
Vol 297-301 ◽  
pp. 960-965 ◽  
Author(s):  
Jean Michel Hugo ◽  
Emmanuel Brun ◽  
Frédéric Topin ◽  
Jérôme Vicente

This numerical study focuses on the determination of macroscopic (effective) properties from pore scale calculation. These results will be applied to heat exchangers design. The computational domain -representative of heat exchanger section- is a parallelepiped filled with metallic foam, heated on one face and crossed by a forced fluid flow. Conjugate heat transfer and fluid flow are computed using finite volume approach on the actual solid matrix and pore space topology obtained from X-ray tomograms. Calculated heat transfer coefficient and flow law parameters are in good agreement with literature data. An active foam length is defined and measured in order to provide optimal design characteristic for foamed heat exchanger.


2015 ◽  
Vol 775 ◽  
pp. 50-53
Author(s):  
Milan Kubín ◽  
Jiří Hirš

Contribution is aimed on lost heat of plate heat exchangers to surrounding environment. Heat losses to vicinity are insignificant relative to transferred heat flow in the plate heat exchangers. This small part of the lost heat is demonstrated in parametric case study of plate heat exchanger, where is the lost part of heat energy lower than 0.50 % in ordinary cases.


2020 ◽  
Vol 154 ◽  
pp. 04004
Author(s):  
Tomasz Wyleciał ◽  
Dariusz Urbaniak ◽  
A. E. Barochkin ◽  
V. P. Zhukov ◽  
N. R. Leznova

Many needs have to be met in human life. One of the key needs is to provide living comfort, which is clearly associated with heat. Analyzing the amount of produced heat, it should be emphasized that the higher the development of a country, the greater the demand for heat. In the era of the debate on the impact of human activities on the climate, it is impossible not to emphasize the importance of conserving energy and heat, and thus the rational management of these goods. The paper proposes a mathematical description of the complex systems of heat exchangers in the form of linear differential equations. Their analytical solution is presented in the form of temperature change of the heat carrier along the heating surface of a four-thread heat exchanger. Analysis of the possible heat exchange cases for eight possible flow systems is presented. In addition, the most effective minimization of heat losses was found.


2019 ◽  
Vol 177 (2) ◽  
pp. 187-192
Author(s):  
Joanna FABER ◽  
Zbigniew JURASZ ◽  
Krzysztof BRODZIK

Efforts to improve engine cooling efficiency by usage of heat exchanger as well as research on cooling fluids composition and properties are well described. Studies on heat exchangers are focused mainly on their durability properties, while cooling fluids development is lately concentrating on nanofluids. In this paper physicochemical properties changes of diluted glycol-based cooling fluid in a long-term durability test of vehicle heat exchanger, were investigated. Following parameters were measured: density of coolant, pH value, elements content in coolant, and reserve alkalinity. Above mentioned analyses were performed on samples collected both in the beginning and periodically after every 500 hours of durability test which lasted for 3000 hours in total. The performed study leads to conclusion that interaction of cooling fluid with material of heat exchanger and changes in glycol composition during long-lasting durability test allows to determine aging effect of applied glycol solution on heat exchanger wear.


2019 ◽  
Vol 29 (11) ◽  
pp. 4334-4348
Author(s):  
Minqiang Pan ◽  
Hongqing Wang ◽  
Yujian Zhong ◽  
Tianyu Fang ◽  
Xineng Zhong

Purpose With the increasing heat dissipation of electronic devices, the cooling demand of electronic products is increasing gradually. A water-cooled microchannel heat exchanger is an effective cooling technology for electronic equipment. The structure of a microchannel has great impact on the heat transfer performance of a microchannel heat exchanger. The purpose of this paper is to analyze and compare the fluid flow and heat transfer characteristic of a microchannel heat exchanger with different reentrant cavities. Design/methodology/approach The three-dimensional steady, laminar developing flow and conjugate heat transfer governing equations of a plate microchannel heat exchanger are solved using the finite volume method. Findings At the flow rate range studied in this paper, the microchannel heat exchangers with reentrant cavities present better heat transfer performance and smaller pressure drop. A microchannel heat exchanger with trapezoidal-shaped cavities has best heat transfer performance, and a microchannel heat exchanger with fan-shaped cavities has the smallest pressure drop. Research limitations/implications The fluid is incompressible and the inlet temperature is constant. Practical implications It is an effective way to enhance heat transfer and reduce pressure drop by adding cavities in microchannels and the data will be helpful as guidelines in the selection of reentrant cavities. Originality/value This paper provides the pressure drop and heat transfer performance analysis of microchannel heat exchangers with various reentrant cavities, which can provide reference for heat transfer augmentation of an existing microchannel heat exchanger in a thermal design.


Author(s):  
Ranganayakulu Chennu

Purpose The purpose of this study is to find the thermo-hydraulic performances of compact heat exchangers (CHE’s), which are strongly depending upon the prediction of performance of various types of heat transfer surfaces such as offset strip fins, wavy fins, rectangular fins, triangular fins, triangular and rectangular perforated fins in terms of Colburn “j” and Fanning friction “f” factors. Design/methodology/approach Numerical methods play a major role for analysis of compact plate-fin heat exchangers, which are cost-effective and fast. This paper presents the on-going research and work carried out earlier for single-phase steady-state heat transfer and pressure drop analysis on CHE passages and fins. An analysis of a cross-flow plate-fin compact heat exchanger, accounting for the individual effects of two-dimensional longitudinal heat conduction through the exchanger wall, inlet fluid flow maldistribution and inlet temperature non-uniformity are carried out using a Finite Element Method (FEM). Findings The performance deterioration of high-efficiency cross-flow plate-fin compact heat exchangers have been reviewed with the combined effects of wall longitudinal heat conduction and inlet fluid flow/temperature non-uniformity using a dedicated FEM analysis. It is found that the performance deterioration is quite significant in some typical applications due to the effects of wall longitudinal heat conduction and inlet fluid flow non-uniformity on cross-flow plate-fin heat exchangers. A Computational Fluid Dynamics (CFD) program FLUENT has been used to predict the design data in terms of “j” and “f” factors for plate-fin heat exchanger fins. The suitable design data are generated using CFD analysis covering the laminar, transition and turbulent flow regimes for various types of fins. Originality/value The correlations for the friction factor “f” and Colburn factor “j” have been found to be good. The correlations can be used by the heat exchanger designers and can reduce the number of tests and modification of the prototype to a minimum for similar applications and types of fins.


Sign in / Sign up

Export Citation Format

Share Document