8. Temperature Dependence of Carbon Dioxide, Nitrous Oxide and Methane Exchange in High Arctic Mineral Soils: Implications for Feedbacks to a Warming

Author(s):  
Evangeline Fisher

Plant communities in the high Arctic are distributed according to moisture gradients. If moisture regimes change in response to future climate change, the distribution of plant communities is also likely to change. An understanding of how interactions between vegetation community type and changes in temperature and moisture levels will impact the flux of nitrous oxide, methane and carbon dioxide in arctic soils is critical for predicting potential positive feedback to climate warming. My research quantifies the flux of these greenhouse gases from mineral soils collected from three different plant community types at Cape Bounty, Nunavut: wet sedge, mesic heath, and polar desert. Intact soil cores (0‐10 cm) were collected during July of 2008, then sealed and refrigerated for transportation back to Kingston. The cores were incubated at 4°C, 8°C, and 12°C, including a three week pre‐incubation to ensure the cores were completely equilibrated to their respective temperature. My results suggest a significant temperature dependency for production of each of the greenhouse gases, with enhanced output in the characteristically wetter sites. The response to temperature (Q10) does not; however, appear to be consistent across the different plant communities. Further field studies were conducted to determine the impact of these vegetative community types on observed soil temperature. My results demonstrate a tendency toward warmer temperatures and enhanced diurnal fluctuations at drier sites. These initial results suggest that in a warmer climate, high Arctic soils have the potential to contribute to a positive feedback to climate change through the efflux of these gases.29

2018 ◽  
Vol 25 (3) ◽  
pp. 383-394 ◽  
Author(s):  
Marta Marszałek ◽  
Zygmunt Kowalski ◽  
Agnieszka Makara

Abstract Pig slurry is classified as a natural liquid fertilizer, which is a heterogeneous mixture of urine, faeces, remnants of feed and technological water, used to remove excrement and maintain the hygiene of livestock housing. The storage and distribution of pig slurry on farmland affect the environment as they are associated with, among others, the emission of various types of gaseous pollutants, mainly CH4, CO2, N2O, NH3, H2S, and other odorants. Methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) are greenhouse gases (GHGs) which contribute to climate change by increasing the greenhouse effect. Ammonia (NH3) and hydrogen sulfide (H2S) are malodorous gases responsible for the occurrence of odour nuisance which, due to their toxicity, may endanger the health and lives of humans and animals. NH3 also influences the increase of atmosphere and soil acidification. The article presents the environmental impact of greenhouse gases and odorous compounds emitted from pig slurry. Key gaseous atmospheric pollutants such as NH3, H2S, CH4, CO2 and N2O have been characterized. Furthermore, methods to reduce the emission of odours and GHGs from pig slurry during its storage and agricultural usage have been discussed.


Author(s):  
Gordon Conway ◽  
Ousmane Badiane ◽  
Katrin Glatzel

This chapter explores threats to food security. It reveals many challenges arising from a range of threats external to the farm household, including severe biological threats from pests, disease, and weeds. Moreover, healthy, fertile soils are the cornerstone of food security and rural livelihoods, but African soils are degrading. Water is just as important for the productivity of plants, and lack of water leads to chronic and acute stress. Indeed, Africa is already battling the impacts of climate change. Rising temperatures and variable rainfall are increasing the exposure of smallholders to drought, famine, and disease. Agriculture is an important emitter of greenhouse gases (GHGs), not only carbon dioxide but also such powerful gases as methane and nitrous oxide. In addition, there are often severe socioeconomic challenges, including unstable and high prices of basic commodities. Finally, conflicts cause disruption to food security.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Angela Margaret Evans

Abstract Background Healthcare aims to promote good health and yet demonstrably contributes to climate change, which is purported to be ‘the biggest global health threat of the 21st century’. This is happening now, with healthcare as an industry representing 4.4% of global carbon dioxide emissions. Main body Climate change promotes health deficits from many angles; however, primarily it is the use of fossil fuels which increases atmospheric carbon dioxide (also nitrous oxide, and methane). These greenhouse gases prevent the earth from cooling, resulting in the higher temperatures and rising sea levels, which then cause ‘wild weather’ patterns, including floods, storms, and droughts. Particular vulnerability is afforded to those already health compromised (older people, pregnant women, children, wider health co-morbidities) as well as populations closer to equatorial zones, which encompasses many low-and-middle-income-countries. The paradox here, is that poorer nations by spending less on healthcare, have lower carbon emissions from health-related activity, and yet will suffer most from global warming effects, with scant resources to off-set the increasing health care needs. Global recognition has forged the Paris agreement, the United Nations sustainable developments goals, and the World Health Organisation climate change action plan. It is agreed that most healthcare impact comes from consumption of energy and resources, and the production of greenhouse gases into the environment. Many professional associations of medicine and allied health professionals are advocating for their members to lead on environmental sustainability; the Australian Podiatry Association is incorporating climate change into its strategic direction. Conclusion Podiatrists, as allied health professionals, have wide community engagement, and hence, can model positive environmental practices, which may be effective in changing wider community behaviours, as occurred last century when doctors stopped smoking. As foot health consumers, our patients are increasingly likely to expect more sustainable practices and products, including ‘green footwear’ options. Green Podiatry, as a part of sustainable healthcare, directs us to be responsible energy and product consumers, and reduce our workplace emissions.


2007 ◽  
Vol 8 ◽  
pp. 1-7
Author(s):  
Krishna B. Karki

Concentration of greenhouse gases has been found increasing over the past centuries. Carbon dioxide (9-26% greenhouse effect), methane (4-9%), and nitrous oxide (3-6%) are the three principal greenhouse gasses though chloroflourocarbon and halon are also included as greenhouse gasses but are in very small greenhouse effect. These gasses are produced both from natural process and anthropogenic activities .Increase of these greenhouse gasses from nature in the atmosphere is mainly from the decomposition of organic matter, nitrification and denitrification of nitrogen including respiration by the plants. Anthropogenic production of carbon dioxide is from burning of fossil fuel whereas for methane livestock and paddy cultivation. Agricultural activities mainly use of mineral fertilizer is responsible for nitrous oxide emission. Increase of these gasses in atmosphere increases temperature that further accelerates evaporation of moisture from the earth’s surface. Increase in water vapor in the atmosphere will further aggravate temperature rise. This increase in atmospheric temperature has direct effect in the melting of glacier ice in Nepalese Himalaya. Melting of ice and increases water volume in the glacier fed rivers and glacier lakes. Rise in water volume beyond its capacity the glacial lakes bursts releasing millions of cubit meters of water and takes million of lives and properties downstream. If this continues there will be no more ice left in the Himalaya and in the long run all the rivers of Nepal will go dry and country will face serious water shortage for drinking, irrigation and other purposes. The Journal of AGRICULTURE AND ENVIRONMENT Vol. 8, 2007, pp. 1-7


2009 ◽  
Vol 2009 ◽  
pp. 249-249
Author(s):  
H Prosser

The work of the UK Climate Change Commission (UKCCC) in recommending targets and options for reducing emissions of greenhouse gases is focusing attention on what agriculture and land use can contribute to deliver these targets. Although overall the major issue is the reduction of carbon dioxide emissions from energy use, agriculture and land use are significant emitters of methane and nitrous oxide. UKCCC has identified three main routes by which emissions can be reduced• Lifestyle change with less reliance on carbon intensive produce -eg switching from sheep, and beef to pig, poultry and vegetables.• Changing farm practices – eg to improve use of fertilisers and manures• Using new technology on farms – eg modifying rumen processes, anaerobic digestion.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1633
Author(s):  
Christoph Emmerling ◽  
Andreas Krein ◽  
Jürgen Junk

The intensification of livestock production, to accommodate rising human population, has led to a higher emission of ammonia into the environment. For the reduction of ammonia emissions, different management steps have been reported in most EU countries. Some authors, however, have criticized such individual measures, because attempts to abate the emission of ammonia may lead to significant increases in either methane, nitrous oxide, or carbon dioxide. In this study, we carried out a meta-analysis of experimental European data published in peer-reviewed journals to evaluate the impact of major agricultural management practices on ammonia emissions, including the pollution swapping effect. The result of our meta-analysis showed that for the treatment, storage, and application stages, only slurry acidification was effective for the reduction of ammonia emissions (−69%), and had no pollution swapping effect with other greenhouse gases, like nitrous oxide (−21%), methane (−86%), and carbon dioxide (−15%). All other management strategies, like biological treatment, separation strategies, different storage types, the concealing of the liquid slurry with different materials, and variable field applications were effective to varying degrees for the abatement of ammonia emission, but also resulted in the increased emission of at least one other greenhouse gas. The strategies focusing on the decrease of ammonia emissions neglected the consequences of the emissions of other greenhouse gases. We recommend a combination of treatment technologies, like acidification and soil incorporation, and/or embracing emerging technologies, such as microbial inhibitors and slow release fertilizers.


1999 ◽  
Vol 26 (3) ◽  
pp. 166-168 ◽  
Author(s):  
TIM NEWCOMB

Many nations have recognized the need to reduce the emissions of greenhouse gases (GHGs). The scientific assessments of climate change of the Intergovernmental Panel on Climate Change (IPCC) support the need to reduce GHG emissions. The 1997 Kyoto Protocol to the 1992 Convention on Climate Change (UNTS 30822) has now been signed by more than 65 countries, although that Protocol has not yet entered into force. Some 14 of the industrialized countries listed in the Protocol face reductions in carbon dioxide emissions of more than 10% compared to projected 1997 carbon dioxide emissions (Najam & Page 1998).


2020 ◽  
Author(s):  
Fallon Fowler ◽  
Christopher J. Gillespie ◽  
Steve Denning ◽  
Shuijin Hu ◽  
Wes Watson

AbstractBy mixing and potentially aerating dung, dung beetles may affect the microbes producing the greenhouse gases (GHGs): carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Here, their sum-total global warming effect is described as the carbon dioxide equivalent (CO2e). Our literature analysis of reported GHG emissions and statistics suggests that most dung beetles do not, however, reduce CO2e even if they do affect individual GHGs. Here, we compare the GHG signature of homogenized (“premixed”) and unhomogenized (“unmixed”) dung with and without dung beetles to test whether mixing and burial influence GHGs. Mixing by hand or by dung beetles did not reduce any GHG – in fact, tunneling dung beetles increased N2O medians by ≥1.8x compared with dung-only. This suggests that either: 1) dung beetles do not meaningfully mitigate GHGs as a whole; 2) dung beetle burial activity affects GHGs more than mixing alone; or 3) greater dung beetle abundance and activity is required to produce an effect.


Sign in / Sign up

Export Citation Format

Share Document