scholarly journals Meta-Analysis of Strategies to Reduce NH3 Emissions from Slurries in European Agriculture and Consequences for Greenhouse Gas Emissions

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1633
Author(s):  
Christoph Emmerling ◽  
Andreas Krein ◽  
Jürgen Junk

The intensification of livestock production, to accommodate rising human population, has led to a higher emission of ammonia into the environment. For the reduction of ammonia emissions, different management steps have been reported in most EU countries. Some authors, however, have criticized such individual measures, because attempts to abate the emission of ammonia may lead to significant increases in either methane, nitrous oxide, or carbon dioxide. In this study, we carried out a meta-analysis of experimental European data published in peer-reviewed journals to evaluate the impact of major agricultural management practices on ammonia emissions, including the pollution swapping effect. The result of our meta-analysis showed that for the treatment, storage, and application stages, only slurry acidification was effective for the reduction of ammonia emissions (−69%), and had no pollution swapping effect with other greenhouse gases, like nitrous oxide (−21%), methane (−86%), and carbon dioxide (−15%). All other management strategies, like biological treatment, separation strategies, different storage types, the concealing of the liquid slurry with different materials, and variable field applications were effective to varying degrees for the abatement of ammonia emission, but also resulted in the increased emission of at least one other greenhouse gas. The strategies focusing on the decrease of ammonia emissions neglected the consequences of the emissions of other greenhouse gases. We recommend a combination of treatment technologies, like acidification and soil incorporation, and/or embracing emerging technologies, such as microbial inhibitors and slow release fertilizers.

2020 ◽  
Author(s):  
Fallon Fowler ◽  
Christopher J. Gillespie ◽  
Steve Denning ◽  
Shuijin Hu ◽  
Wes Watson

AbstractBy mixing and potentially aerating dung, dung beetles may affect the microbes producing the greenhouse gases (GHGs): carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). Here, their sum-total global warming effect is described as the carbon dioxide equivalent (CO2e). Our literature analysis of reported GHG emissions and statistics suggests that most dung beetles do not, however, reduce CO2e even if they do affect individual GHGs. Here, we compare the GHG signature of homogenized (“premixed”) and unhomogenized (“unmixed”) dung with and without dung beetles to test whether mixing and burial influence GHGs. Mixing by hand or by dung beetles did not reduce any GHG – in fact, tunneling dung beetles increased N2O medians by ≥1.8x compared with dung-only. This suggests that either: 1) dung beetles do not meaningfully mitigate GHGs as a whole; 2) dung beetle burial activity affects GHGs more than mixing alone; or 3) greater dung beetle abundance and activity is required to produce an effect.


Author(s):  
An Ha Truong ◽  
Minh Thuy Kim ◽  
Thi Thu Nguyen ◽  
Ngoc Tung Nguyen ◽  
Quang Trung Nguyen

Livestock farming is a major source of greenhouse gas and ammonia emissions. In this study, we estimate methane, nitrous oxide and ammonia emission from livestock sector in the Red River Delta region from 2000 to 2015 and projection to 2030 using IPCC 2006 methodologies with the integration of local emission factors and provincial statistic livestock database. Methane, nitrous oxide and ammonia emissions in 2030 are estimated at 132 kt, 8.3 kt and 34.2 kt, respectively. Total global warming potential is 9.7 MtCO2eq in 2030, accounts for 33% greenhouse gas emissions from livestock in Vietnam. Pig farming is responsible for half of both greenhouse gases and ammonia emissions in the studied region. Other major livestock for greenhouse gas emission is cattle and for ammonia emission is poultry. Hanoi contributes for the largest emissions in the region in 2015 but will be caught up and surpassed by other provinces in 2030.


2016 ◽  
Vol 56 (3) ◽  
pp. 343 ◽  
Author(s):  
F. Gioelli ◽  
E. Dinuccio ◽  
D. Cuk ◽  
L. Rollè ◽  
P. Balsari

A study was performed to assess: (1) the feasibility to acidify the separated solid fraction of raw and co-digested pig slurry by using a powdery sulfur-based product; and (2) the effect of this acidification method on greenhouse gases and ammonia emissions during manure storage. Samples of raw and co-digested pig slurry were collected at two commercial farms and mechanically separated by a laboratory-scale screw press device. The sulfur powder (80% concentration) was added to the obtained separated solid fractions at three application rates: 0.5%, 1% and 2% (w/w). Carbon dioxide, methane, nitrous oxide and ammonia emissions were afterwards measured during storage of the acidified samples and compared with those measured from untreated samples (Control). Gaseous emissions were determined with dynamic chamber method by Infrared Photoacoustic Detection. Gaseous losses were monitored along 30 and 60 days of storage time for raw solid fraction and digested solid fraction, respectively. The addition of the tested sulfur powder to solid fractions showed to be a reliable and effective method to acidify raw and co-digested solid fractions. Results showed a significant reduction of both greenhouse gases and ammonia emission regardless of the separated solid fraction type. The highest sulfur application rate (2% w/w) led to a reduction of up to 78% of greenhouse gas emission and 65% of ammonia losses from raw separated solid fraction when compared with the Control. Similar results were achieved from the co-digested solid fraction, with emission reduction of up to 67% for ammonia and 61% for greenhouse gas.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Alexandra M. Collins ◽  
Neal R. Haddaway ◽  
Biljana Macura ◽  
James Thomas ◽  
Nicola Randall ◽  
...  

Abstract Background Reducing greenhouse gas emissions is a vital step in limiting climate change and meeting the goals outlined in the COP 21 Paris Agreement of 2015. Studies have suggested that agriculture accounts for around 11% of total greenhouse gas emissions and the industry has a significant role in meeting international and national climate change reduction objectives. However, there is currently little consensus on the mechanisms that regulate the production and assimilation of greenhouse gases in arable land and the practical factors that affect the process. Practical advice for farmers is often overly general, and models based on the amount of nitrogen fertiliser applied, for example, are used despite a lack of knowledge of how local conditions affect the process, such as the importance of humus content and soil types. Here, we propose a systematic map of the evidence relating to the impact on greenhouse gas flux from the agricultural management of arable land in temperate regions. Methods Using established methods for systematic mapping in environmental sciences we will search for, collate and catalogue research studies relating to the impacts of farming in temperate systems on greenhouse gas emissions. We will search 6 bibliographic databases using a tested search string, and will hand search a web-based search engine and a list of organisational web sites. Furthermore, evidence will be sought from key stakeholders. Search results will then be screened for relevance at title, abstract and full text levels according to a predefined set of eligibility criteria. Consistency checking will be employed to ensure the criteria are being applied accurately and consistently. Relevant studies will then be subjected to coding and meta-data extraction, which will be used to populate a systematic map database describing each relevant study’s settings, methods and measured outcomes. The mapping process will help to identify knowledge gaps (subjects lacking in evidence warranting further primary research) and knowledge clusters (subjects with sufficient studies to allow a useful full systematic review), and will highlight best and suboptimal research methods.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 330
Author(s):  
Jean-Christophe Castella ◽  
Sonnasack Phaipasith

Road expansion has played a prominent role in the agrarian transition that marked the integration of swidden-based farming systems into the market economy in Southeast Asia. Rural roads deeply altered the landscape and livelihood structures by allowing the penetration of boom crops such as hybrid maize in remote territories. In this article, we investigate the impact of rural road developments on livelihoods in northern Laos through a longitudinal study conducted over a period of 15 years in a forest frontier. We studied adaptive management strategies of local stakeholders through the combination of individual surveys, focus group discussions, participatory mapping and remote-sensing approaches. The study revealed the short-term benefits of the maize feeder roads on poverty alleviation and rural development, but also the negative long-term effects on agroecosystem health and agricultural productivity related to unsustainable land use. Lessons learnt about the mechanisms of agricultural intensification helped understanding the constraints faced by external interventions promoting sustainable land management practices. When negotiated by local communities for their own interest, roads may provide livelihood-enhancing opportunities through access to external resources, rather than undermining them.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Robert Knoerl ◽  
Emanuele Mazzola ◽  
Fangxin Hong ◽  
Elahe Salehi ◽  
Nadine McCleary ◽  
...  

Abstract Background Chemotherapy-induced peripheral neuropathy (CIPN) negatively affects physical function and chemotherapy dosing, yet, clinicians infrequently document CIPN assessment and/or adhere to evidence-based CIPN management in practice. The primary aims of this two-phase, pre-posttest study were to explore the impact of a CIPN clinician decision support algorithm on clinicians’ frequency of CIPN assessment documentation and adherence to evidence-based management. Methods One hundred sixty-two patients receiving neurotoxic chemotherapy (e.g., taxanes, platinums, or bortezomib) answered patient-reported outcome measures on CIPN severity and interference prior to three clinic visits at breast, gastrointestinal, or multiple myeloma outpatient clinics (n = 81 usual care phase [UCP], n = 81 algorithm phase [AP]). During the AP, study staff delivered a copy of the CIPN assessment and management algorithm to clinicians (N = 53) prior to each clinic visit. Changes in clinicians’ CIPN assessment documentation (i.e., index of numbness, tingling, and/or CIPN pain documentation) and adherence to evidence-based management at the third clinic visit were compared between the AP and UCP using Pearson’s chi-squared test. Results Clinicians’ frequency of adherence to evidence-based CIPN management was higher in the AP (29/52 [56%]) than the UCP (20/46 [43%]), but the change was not statistically significant (p = 0.31). There were no improvements in clinicians’ CIPN assessment frequency during the AP (assessment index = 0.5440) in comparison to during the UCP (assessment index = 0.6468). Conclusions Implementation of a clinician-decision support algorithm did not significantly improve clinicians’ CIPN assessment documentation or adherence to evidence-based management. Further research is needed to develop theory-based implementation interventions to bolster the frequency of CIPN assessment and use of evidence-based management strategies in practice. Trial registration ClinicalTrials.Gov, NCT03514680. Registered 21 April 2018.


2007 ◽  
Vol 8 ◽  
pp. 1-7
Author(s):  
Krishna B. Karki

Concentration of greenhouse gases has been found increasing over the past centuries. Carbon dioxide (9-26% greenhouse effect), methane (4-9%), and nitrous oxide (3-6%) are the three principal greenhouse gasses though chloroflourocarbon and halon are also included as greenhouse gasses but are in very small greenhouse effect. These gasses are produced both from natural process and anthropogenic activities .Increase of these greenhouse gasses from nature in the atmosphere is mainly from the decomposition of organic matter, nitrification and denitrification of nitrogen including respiration by the plants. Anthropogenic production of carbon dioxide is from burning of fossil fuel whereas for methane livestock and paddy cultivation. Agricultural activities mainly use of mineral fertilizer is responsible for nitrous oxide emission. Increase of these gasses in atmosphere increases temperature that further accelerates evaporation of moisture from the earth’s surface. Increase in water vapor in the atmosphere will further aggravate temperature rise. This increase in atmospheric temperature has direct effect in the melting of glacier ice in Nepalese Himalaya. Melting of ice and increases water volume in the glacier fed rivers and glacier lakes. Rise in water volume beyond its capacity the glacial lakes bursts releasing millions of cubit meters of water and takes million of lives and properties downstream. If this continues there will be no more ice left in the Himalaya and in the long run all the rivers of Nepal will go dry and country will face serious water shortage for drinking, irrigation and other purposes. The Journal of AGRICULTURE AND ENVIRONMENT Vol. 8, 2007, pp. 1-7


2020 ◽  
pp. 94-110
Author(s):  
N.V. Dvoeglazova ◽  
B.V. Chubarenko ◽  
Y.A. Kozlova

The increase in greenhouse gases in the atmosphere is influenced to a greater extent by a degree of development of industry, a growth of electrification, deforestation, and the burning of fuel for the production of heating and electricity. The contribution of emissions of each of these factors and the ratio of greenhouse gases in them should be taken into account when developing the measures to prevent climate change. According to calculations of emissions from the territory of the Kaliningrad region the burning of fuel and energy resources are supposed to be playing the main role in the greenhouse gas emission from the territory of the Kaliningrad region. In statistical reference books this activity is described as the “activities for the production and distribution of electricity, gas and water.” The usage of this fuel in the energy sector is increasing: from 1742.4 thousand tons of standard fuel in 1991 up to 2193.9 in 2016. Such little increase in total emissions is due to the general technology improvement in the country. Carbon dioxide makes up the bulk of greenhouse gas emissions from the territory of the Kaliningrad region. The percentage of the gases in the total volume is as follows: CO2 - 96.7%, CH4 - 1%, N2 O - 2.3%. Its emissions for the period from 2013 to 2016 varied from 3,757.4 in 2014 to 4,091.7 in 2015 thousand tons of standard fuel, reaching its maximum value in 2015. The estimate presented in this paper is a lower estimate, since it does not take into account emissions from industrial processes, leaks, land use, waste, etc., as well as from some categories of emission sources due to the lack of data on the use of fuel in the Kaliningrad region. Among other things, the calculations of emissions of carbon dioxide, methane and nitrous oxide from the use of fuel by vehicles in 2016, which have shown to be 1.86 times less than from burning of fossil fuels for the same year (2032.87 Gg CO2 eq. and 3914.79 Gg CO2 eq., respectively) and to account for 34.5% of the total emissions, have been made. Moreover, according to the methodology for calculating emissions the factor of carbon dioxide absorption by the region’s forests has been taken into account. The amount of carbon dioxide absorbed by forests has shown to be only 11.9% of the emissions of this gas during the combustion of boiler and furnace fuel.


Sign in / Sign up

Export Citation Format

Share Document