Land Use Change Effects on Soil Quality in Prince Edward County, ON

Author(s):  
Elizabeta Kjikjerkovska

Soils play a key role in Earth System function. When original vegetation cover is converted to cultivated land, soils often become degraded and lose their productivity potential. We examined the effects of land-use change on a clay/clay loam soil on a farm in Ameliasburg on the northern part of Prince Edward County. Three cover types were examined: perennial sod (for lawns), perennial switchgrass (potential bioengery crop) and undisturbed forest. For each soil type, cores to a depth of 40cm were collected along three random 30m transects (at 8, 16 and 24m), then divided into 10cm increments and combined along one transect according to depth. Soil quality was assessed by analyzing various soil physical and chemical properties. Bulk density was almost two-fold higher (1.5 vs. 0.82 g/cm3) in both grass systems compared to the forest, but only in the 0-10cm layer, likely due to surface compaction associated with land management. Soil pH was slightly lower in the forest compared to the switchgrass field. The sod and switchgrass fields showed losses of ~33% and ~53% organic matter, respectively in contrast to the forested area. The largest differences for organic matter and total carbon were in the top 20cm. Soil C: N ratios were highest for the forested site and lowest for the sod field. Although perennial grass systems often enhance soil quality compared to extensively tilled sites, it appears that long-term (10y) sod production has led to a decline in some, but not all, soil quality measures, particularly soil organic matter and carbon content.

Author(s):  
Kelsey Watts

Soils play a critical role to society as a medium that facilitates crop production and also contributes to the energy and carbon balance of the Earth System. Land-use change and improper land-use is one of the dominant factors affecting soil erosion and nutrient loss in soils. We examined the effects of land-use change on an Elmbrook clay/clay-loam soil on a farm in Ameliasburg on the northern part of Prince Edward County. Three cover types were examined: a sod field (established for over 10 years), a wheat field (part of a wheat/corn/soybean rotation for 30 years) and an undisturbed deciduous forest. Under each land-use type, cores to a depth of 40 cm were collected along three random 30 m transects (at 8, 16 and 24 m), then divided them into 10 cm increments, combining all similar depth increments along one transect. Soil quality was assessed by analyzing various soil physical and chemical properties. Bulk density of the soil was much higher (1.55 vs. 0.95 g/cm3) in both agricultural ecosystems compared to the forest, but only in the 0-10 cm layer. Soil moisture at 60% water holding capacity was much greater for the forest than the sod and wheat soils. Soil pH was slightly lower in the forest compared to the sod and wheat fields. The sod and wheat fields showed losses of ~52% and ~53% organic matter, respectively, in contrast to the forested area. The greatest differences in organic matter and total carbon were found in the top 10 cm, likely due to the greater accumulation of litter at the ground surface in the forest compared to the agricultural sites. It appears that long-term (10 year) agricultural production has led to a decline in some, but not all, soil quality measures, particularly soil organic matter, bulk density and water holding capacity. These findings are consistent with much of the literature concerning the effects of land-use change on soil quality, and highlight the need to develop improved management systems to minimize losses in soil quality that can lead to declines in the productivity potential of soils over time.


Soil Research ◽  
2005 ◽  
Vol 43 (1) ◽  
pp. 13 ◽  
Author(s):  
R. C. Dalal ◽  
B.P. Harms ◽  
E. Krull ◽  
W.J. Wang

Mulga (Acacia aneura) dominated vegetation originally occupied 11.2 Mha in Queensland, of which 12% has been cleared, mostly for pasture production, but some areas are also used for cereal cropping. Since mulga communities generally occupy fragile soils, mostly Kandosols and Tenosols, in semi-arid environments, clearing of mulga, which continues at a rate of at least 35 000 ha/year in Queensland, has considerable impact on soil organic carbon (C), and may also have implications for the greenhouse gas emissions associated with land use change in Australia. We report here the changes in soil C and labile C pools following mulga clearing to buffel pasture (Cenchrus ciliaris) and cereal (mostly wheat) cropping for 20 years in a study using paired sites. Soil organic C in the top 0.05 m of soil declined by 31% and 35% under buffel pasture and cropping, respectively. Land use change from mulga to buffel and cropping led to declines in soil organic C of 2.4 and 4.7 t/ha, respectively, from the top 0.3 m of soil. Using changes in the δ13C values of soil organic C as an approximate representation of C derived from C3 and C4 vegetation from mulga and buffel, respectively, up to 31% of soil C was C4-derived after 20 years of buffel pasture. The turnover rates of mulga-derived soil C ranged from 0.035/year in the 0–0.05 m depth to 0.008/year in the 0.6–1 m depths, with respective turnover times of 29 and 133 years. Soil organic matter quality, as measured by the proportion/amount of labile fraction C (light fraction, < 1.6 t/m3) declined by 55% throughout the soil profile (0–1 m depth) under both pasture and cropping. There is immediate concern for the long-term sustainable use of land where mulga has been cleared for pasture and/or cropping with a continuing decline in soil organic matter quality and, hence, soil fertility and biomass productivity. In addition, the removal of mulga forest over a 20-year period in Queensland for pasture and cropping may have contributed to the atmosphere at least 12 Mt CO2-equivalents.


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 182
Author(s):  
Rachel de Lastic ◽  
Thảo Hoàng ◽  
Phuong Nguyen ◽  
Sovanda Son ◽  
Vuthy Suos ◽  
...  

For many emerging economies, rapid land use change from forest to farmland is resulting in high levels of land degradation. Farming systems such as maize cultivation under conventional tillage after slash and burn degrade the soil resource through declining soil structural stability. Cultivation enhances mineralisation and hence loss of soil organic matter, which in turn reduces soil structures stability and promotes further carbon losses through soil erosion. Alternative land uses such as fruit tree plantations, or practise change to reduced tillage or conservation agriculture have the potential to counter this spiral of accelerated soil degradation through improving soil structural stability and build-up of soil organic matter. This project assessed how land use influences soil structural stability in Cambodia near Battambang and the North-Western Mountain regions of Vietnam where maize based system are most common. Soil properties measured were: (1) total carbon and nitrogen content analysis, (2) particle and aggregate size distribution using laser refraction, (3) hydraulic conductivity, (4) bulk density and (5) microbial CO2 respiration. Information on land use history was also collected through farmer surveys. Land use significantly influenced aggregate stability and hydraulic conductivity. This was largely associated with differences in soil organic carbon content. Forest system had the highest, and conventional maize systems had the lowest amount of large aggregates. Fruit tree plantations are relatively new to these regions but they already showed improved soil aggregate sizes though the level of improvement varied and depended on remnant soil.


Author(s):  
Claudia Wheler

Changes in land management can have a significant impact on soil quality, which can change the capacity of land to provide essential services to society. We explored the impact of land-use change and land management on an organic farm near Seeley’s Bay, Ontario on a Gananoque Clay soil. Three replicate soil samples were collected to a depth of 40cm (10 cm increments) from a native forest (never cultivated), a field producing hay for over 10 years, and a tilled field used to grow a variety of vegetables. The soils were analyzed by the entire class (GPHY 317) for bulk density, particle-size distribution, organic matter content, pH, soil colour, microbial biomass, and microbial activity. After reviewing the results, we found thegreatest decline in soil quality (using the forest soil as a “reference” for the area) was the tilled field for vegetable production. The tilled site had a higher average bulk density of 1.34g/cc compared to forests bulk density of 0.88g/cc. The forest had a higher average organic matter content of 5% versus an average of 4% found at the tilled site. Additionally, the tilled site had a higher pH (5.8 vs. 4.9) likely due to intermittent liming, and lower water holding capacity. The compilation of the results illustrates the true affects land-management has on soil quality. By understanding the impacts of different land-use methods society can modify current practices to help increase soil quality and prevent the loss of the critical services that healthy soil provides to society. 


Author(s):  
S.M. Thomas ◽  
M.H.Beare C.D. Ford ◽  
V. Rietveld

Humping/hollowing and flipping are land development practices widely used on the West Coast to overcome waterlogging constraints to pasture production. However, there is very limited information about how the resulting "new" soils function and how their properties change over time following these extreme modifications. We hypothesised that soil quality will improve in response to organic matter inputs from plants and excreta, which will in turn increase nutrient availability. We tested this hypothesis by quantifying the soil organic matter and nutrient content of soils at different stages of development after modification. We observed improvements in soil quality with increasing time following soil modification under both land development practices. Total soil C and N values were very low following flipping, but over 8 years these values had increased nearly five-fold. Other indicators of organic matter quality such as hot water extractable C (HWC) and anaerobically mineralisable N (AMN) showed similar increases. With large capital applications of superphosphate fertiliser to flipped soils in the first year and regular applications of maintenance fertiliser, Olsen P levels also increased from values


Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 358
Author(s):  
Elena Gagnarli ◽  
Giuseppe Valboa ◽  
Nadia Vignozzi ◽  
Donatella Goggioli ◽  
Silvia Guidi ◽  
...  

Sustainable agriculture largely depends on soil biodiversity and requires efficient methods to assess the effectiveness of agronomic planning. Knowledge of the landscape and relative pedosite is enriched by data on the soil microarthropod community, which represent useful bio-indicators for early soil-quality detection in land-use change (LUC). In the hilly Maremma region of Grosseto, Italy, two areas, a >10ys meadow converted into a vineyard and an old biodynamic vineyard (no-LUC), were selected for evaluating the LUC effect. For maintaining soil vitality and ecosystem services by meadow, the vineyard was planted and cultivated using criteria of the patented “Corino method”. The aim was to evaluate the LUC impact, within one year, by assessing parameters characterizing soil properties and soil microarthropod communities after the vineyard was planted. The adopted preservative method in the new vineyards did not show a detrimental impact on the biodiversity of soil microarthropods, and in particular, additional mulching contributed to a quick recovery from soil stress due to working the plantation. In the short term, the adopted agricultural context confirmed that the targeted objectives preserved the soil quality and functionality.


Author(s):  
Allison Neil

Soil properties are strongly influenced by the composition of the surrounding vegetation. We investigated soil properties of three ecosystems; a coniferous forest, a deciduous forest and an agricultural grassland, to determine the impact of land use change on soil properties. Disturbances such as deforestation followed by cultivation can severely alter soil properties, including losses of soil carbon. We collected nine 40 cm cores from three ecosystem types on the Roebuck Farm, north of Perth Village, Ontario, Canada. Dominant species in each ecosystem included hemlock and white pine in the coniferous forest; sugar maple, birch and beech in the deciduous forest; grasses, legumes and herbs in the grassland. Soil pH varied little between the three ecosystems and over depth. Soils under grassland vegetation had the highest bulk density, especially near the surface. The forest sites showed higher cation exchange capacity and soil moisture than the grassland; these differences largely resulted from higher organic matter levels in the surface forest soils. Vertical distribution of organic matter varied greatly amongst the three ecosystems. In the forest, more of the organic matter was located near the surface, while in the grassland organic matter concentrations varied little with depth. The results suggest that changes in land cover and land use alters litter inputs and nutrient cycling rates, modifying soil physical and chemical properties. Our results further suggest that conversion of forest into agricultural land in this area can lead to a decline in soil carbon storage.


Author(s):  
Trina Stephens

Land‐use change can have a major impact on soil properties, leading to long‐term changes in soilnutrient cycling rates and carbon storage. While a substantial amount of research has been conducted onland‐use change in tropical regions, empirical evidence of long‐term conversion of forested land toagricultural land in North America is lacking. Pervasive deforestation for the sake of agriculturethroughout much of North America is likely to have modified soil properties, with implications for theglobal climate. Here, we examined the response of physical, chemical and biological soil properties toconversion of forest to agricultural land (100 years ago) on Roebuck Farm near Perth, Ontario, Canada.Soil samples were collected at three sites from under forest and agricultural vegetative cover on bothhigh‐ and low‐lying topographic positions (12 locations in total; soil profile sampled to a depth of 40cm).Our results revealed that bulk density, pH, and nitrate concentrations were all higher in soils collectedfrom cultivate sites. In contrast, samples from forested sites exhibited greater water‐holding capacity,porosity, organic matter content, ammonia concentrations and cation exchange capacity. Many of these characteristics are linked to greater organic matter abundance and diversity in soils under forestvegetation as compared with agricultural soils. Microbial activity and Q10 values were also higher in theforest soils. While soil properties in the forest were fairly similar across topographic gradients, low‐lyingpositions under agricultural regions had higher bulk density and organic matter content than upslopepositions, suggesting significant movement of material along topographic gradients. Differences in soilproperties are attributed largely to increased compaction and loss of organic matter inputs in theagricultural system. Our results suggest that the conversion of forested land cover to agriculture landcover reduces soil quality and carbon storage, alters long‐term site productivity, and contributes toincreased atmospheric carbon dioxide concentrations.


Sign in / Sign up

Export Citation Format

Share Document